When a voltage difference is applied to a piece of metal wire, a 8-mA current flows through it. If this metal wire is now replaced with a silver wire having twice the diameter of the original wire, how much current will flow through the silver wire

Answers

Answer 1

Answer:

Explanation:

The resistance of a wire can be given by the following expression

[tex]R=\frac{\rho\times L}{A }[/tex]

where R is resistance , ρ is specific resistance , L is length of wire and A is cross sectional area

specific resistance of metals are almost the same . So in the present case ρ and l are same . Hence the formula becomes

R = k / A where k is a constant .

The diameter of wire becomes two times hence area of cross section becomes 4 times or 4A .

Resistance becomes 1/4 times . Hence if resistance of metal wire is R , resistance of silver wire will be R / 4 .

current = voltage / resistance

In case of metal wire

8 x 10⁻³ = V / R

In case of silver wire

I = V / (R / 4 ) , I is current , V is potential difference .

I = 4 x V/R

= 4 x 8 x 10⁻³ A

= 32 mA.


Related Questions

What is meant by a charge carrier hole in a semiconductor? Can it be created in a conductor? ​

Answers

Answer:

The materials used to make electronic components like transistor and integrated, circuit behave as if effective particles known as electron through them, causing electrical properties

R1=3 ohms

R2=6 ohms

R4=18 ohms

R5= 15 ohms

R5=9 ohms

90 volts

What is the current running through the entire circuit?

Answers

Answer: current I = 1.875A

Explanation:

If the resistors are connected in series,

Then the equivalent resistance will be

R = 6 + 18 + 15 + 9

R = 48 ohms

Using ohms law

V = IR

Make current I the subject of formula

I = V/R

I = 90/48

I = 1.875A

And if the resistors are connected in parallel, the equivalent resistance will be

1/R = 1/6 + 1/18 + 1/15 + 1/9

1/R = 0.166 + 0.055 + 0.066 + 0.111

R = 1/0.3999

R = 2.5 ohms

Using ohms law

V = IR

I = 90/2.5

Current I = 35.99A

Suppose that a uniform electric field exists in a certain region of space. Now consider a mathematical plane surface of area A. To maximize the flux through this surface, the face of the plane (not its normal)

Answers

Answer: The normal of the plane must be parallel to the electric field vector.

Explanation:

the normal to the surface is defined as a versor that is perpendicular to the plane.

Now, if the angle between this normal and the line of the field is θ, we have that the flux can be written as:

Φ = E*A*cos(θ)

Where E is the field, A is the area and θ is the angle already defined.

Now, this maximizes when θ = 0.

This means that the normal of the surface must be parallel to the electric field

An 80.0 kg man sits on a scale in his car. The car is driving at a speed of 11.0 m/s right as it passes over the top of a semicircular hill of radius 17.0 m. What does the scale read right when he is at the top

Answers

Answer:

F / g = 138 kg

Explanation:

For this exercise let's use Newton's second law

    F- W = m a

the force is equal to the back of the balance

in this case the acceleration is centripetal

    a = v² / r

we substitute

   F - m g = m v² / r

   F = m (g + v²/ r)

calculus

   F = 80 (9.8 + 11²/17)

   F = 1353 N

the balance reading is this value between gravity

   F / g = 1353 / 9.8

   F / g = 138 kg

Very large accelerations can injure the body, especially if they last for a considerable length of time. The severity index (SI), a measure of the likelihood of injury, is defined as SI = a5/2t, where a is the acceleration in multiples of g and t is the time the acceleration lasts (in seconds). In one set of studies of rear end collisions, a person's velocity increases by 12 km/h with an acceleration of 35 m/s2.(a) What is the severity index for the collision? (s)(b) How far does the person travel during the collision if the car was initially moving forward at 7.0 km/h? (m)

Answers

Answer:

a) The severity index (SI) is 3047.749, b) The injured travels 0.345 meters during the collision.

Explanation:

a) The g-multiple of the acceleration, that is, a ratio of the person's acceleration to gravitational acceleration, is:

[tex]a' = \frac{35\,\frac{m}{s^{2}} }{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]a' = 3.569[/tex]

The time taken for the injured to accelerate to final speed is given by this formula under the assumption of constant acceleration:

[tex]v_{f} = v_{o} + a \cdot t[/tex]

Where:

[tex]v_{o}[/tex] - Initial speed, measured in meters per second.

[tex]v_{f}[/tex] - Final speed, measured in meter per second.

[tex]a[/tex] - Acceleration, measured in [tex]\frac{m}{s^{2}}[/tex].

[tex]t[/tex] - Time, measured in seconds.

[tex]t = \frac{v_{f}-v_{o}}{a}[/tex]

[tex]t = \frac{\left(12\,\frac{km}{h} \right)\cdot \left(1000\,\frac{m}{km} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s} \right)}{35\,\frac{m}{s^{2}} }[/tex]

[tex]t = 0.095\,s[/tex]

Lastly, the severity index is now determined:

[tex]SI = \frac{a'^{5}}{2\cdot t}[/tex]

[tex]SI = \frac{3.569^{5}}{2\cdot (0.095\,s)}[/tex]

[tex]SI = 3047.749[/tex]

b) The initial and final speed of the injured are [tex]1.944\,\frac{m}{s}[/tex] and [tex]5.278\,\frac{m}{s}[/tex], respectively. The travelled distance can be determined from this equation of motion:

[tex]v_{f}^{2} = v_{o}^{2} + 2\cdot a \cdot \Delta s[/tex]

Where [tex]\Delta s[/tex] is the travelled distance, measured in meters.

[tex]\Delta s = \frac{v_{f}^{2}-v_{o}^{2}}{2\cdot a}[/tex]

[tex]\Delta s = \frac{\left(5.278\,\frac{m}{s} \right)^{2}-\left(1.944\,\frac{m}{s} \right)^{2}}{2\cdot \left(35\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\Delta s = 0.345\,m[/tex].

If the circuit in the motorcycle runs off a standard 12 V battery, and one of the headlights is switched on, current flowing through the headlight is measured at 3.75 A. What is the power usage of the headlamp? Report the answer to two significant digits

Answers

Answer:

45 W

Explanation:

Power: This can be defined as the rate at which electrical energy is consumed in a circuit. The unit of power is Watt (W).

From the question,

The expression for power is given as,

P = VI.................. Equation 1

Where V = Voltage, I = current.

Given: V = 12 V, I = 3.75 A.

Substitute into equation 1.

P = 12(3.75)

P = 45 W.

Answer:

P = 45 Watt

Explanation:

The electrical power used by an electrical device or the electrical circuit is given by the following formulae:

P = VI

P = I²R

P = V²/R

where,

P = Electrical Power Consumed by the Device

V = The Voltage applied to the circuit or device

R = Resistance of device or circuit

I = Current passing through the device or circuit

We have the following data for our circuit:

V = 12 volts

I = 3.75 A

Therefore, it is clear from the data that we will use the first formula:

P = VI

P = (12 volts)(3.75 A)

P = 45 Watt

Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.340 m and carries a current of 27.5 A in the +x direction. The second wire lies along the x-axis. The wires exert attractive forces on each other, and the force per unit length on each wire is 295 µN/m. What is the y-value (in m) of the line in the xy-plane where the total magnetic field is zero?

Answers

Answer:

The y-value of the line in the xy-plane where the total magnetic field is zero  [tex]U = 0.1355 \ m[/tex]

Explanation:

From the question we are told that

    The distance of wire one from two along the y-axis is    y = 0.340 m

   The current on the first wire is  [tex]I_1 = (27.5i) A[/tex]

    The force per unit length on each wire is  [tex]Z = 295 \mu N/m = 295*10^{-6} N/m[/tex]

Generally the force per unit length is mathematically represented as

         [tex]Z = \frac{F}{l} = \frac{\mu_o I_1I_2}{2\pi y}[/tex]

=>      [tex]\frac{\mu_o I_1I_2}{2\pi y} = 295[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with a constant value of  [tex]\mu_o = 4\pi *10^{-7} \ N/A2[/tex]

substituting values

       [tex]\frac{ 4\pi *10^{-7} 27.5 * I_2}{2\pi * 0.340} = 295 *10^{-6}[/tex]

=>    [tex]I_2 = 18.23 \ A[/tex]

Let U  denote the  line in the xy-plane where the total magnetic field is zero

So  

      So the force per unit length of  wire 2  from  line  U is equal to the force per unit length of wire 1  from  line  (y - U)      

   So  

         [tex]\frac{\mu_o I_2 }{2 \pi U} = \frac{\mu_o I_1 }{2 \pi(y - U) }[/tex]

substituting values

          [tex]\frac{ 18.23 }{ U} = \frac{ 27.5 }{(0.34 - U) }[/tex]

         [tex]6.198 -18.23U = 27.5U[/tex]

          [tex]6.198=45.73U[/tex]

          [tex]U = 0.1355 \ m[/tex]              

Two circular coils are concentric and lie in the same plane. The inner coil contains 110 turns of wire, has a radius of 0.014 m, and carries a current of 9.0 A. The outer coil contains 160 turns and has a radius of 0.022 m. What must be the magnitude of the current in the outer coil, such that the net magnetic field at the common center of the two coils is zero?

Answers

Answer:

The current flowing through the outer coils is  

Explanation:

From the question we are told that

   The number of turn of inner coil is [tex]N _i = 110 \ turns[/tex]

    The radius of inner coil is  [tex]r_i = 0.014 \ m[/tex]

     The current flowing through the inner coil is  [tex]I_i = 9.0 \ A[/tex]

     The number of turn of outer coil is [tex]N_o = 160 \ turns[/tex]

     The radius of outer  coil is [tex]r_o = 0.022\ m[/tex]

For net magnetic field at the common center of the two coils to be  zero  the current flowing in the outer coil must be opposite to current flowing inner coil

   The magnetic field due to inner coils  is mathematically represented as

            [tex]B_i = \frac{N_i \mu I}{2 r_i}[/tex]

     The magnetic field due to inner coils  is mathematically represented as

            [tex]B_o = \frac{N_o \mu I_o}{2 r_o}[/tex]

Now for magnetic field at center to be zero

             [tex]B_o = B_i[/tex]

So

         [tex]\frac{N_i \mu I_i}{2 r_i} = \frac{N_o \mu I_o}{2 r_o}[/tex]

=>      [tex]\frac{110 * 9}{2 * 0.014} = \frac{160 *I_o}{2 0.022}[/tex]

         [tex]I_o = 9.72 \ A[/tex]

What is the momentum of a 2 kg ball traveling at 2m/s

Answers

Answer:

4

Explanation:

p=m×v

m=2kg

v=2m/s

2×2=4

Answer:

4kgms/1

Explanation:

p=m×v

 =2kg×2m/s

 =4kgms/1

dose sound travel faster in a warm room or a cold room? explain your answer

Answers

Answer:Sound travel faster in warm room.

Explanation:The speed of sound depends on the temperature of the medium. Mathematically, the relation between the speed of the sound and the temperature is give by:v=

is the ratio of the specific heats

R is the gas constant

T is the temperature of the medium

We know that the temperature of the warm room is more as compared to the cold room.

So, it is clear that the sound travel faster in a warm room. The particles move faster when the temperature is high.            

Two blocks can collide in a one-dimensional collision. The block on the left hass a mass of 0.30 kg and is initially moving to the right at 2.4 m/s toward a second block of mass 0.80 kg that is initially at rest. When the blocks collide, a cocked spring releases 1.2 J of energy into the system. (For velocities, use to mean to the right, - to mean to the left).A) What is the velocity of the first block after the collision?
B) What is the velocity of the second block after the collision?

Answers

Answer:

a) 3.632 m/s

b) 0.462 m/s

Explanation:

Using the law of conservation of momentum:

[tex]m_{1} u_{1} + m_{2} u_{2}= m_{1} V_{1} + m_{2} V_{2}[/tex]..........(1)

[tex]m_{1} = 0.30 kg\\u_{1} = 2.4 m/s\\m_{2} = 0.80 kg\\u_{2} = 0 m/s[/tex]

Substituting the above values into equation (1) and make V2 the subject of the formula:

[tex]0.3(2.4) + 0.80(0)= 0.3 V_{1} + 0.8 V_{2}\\[/tex]

[tex]V_{2} = \frac{0.72 - 0.3 V_{1}}{0.8}[/tex]..................(2)

Using the law of conservation of kinetic energy:

[tex]0.5m_{1} u_{1} ^{2} + 1.2 = 0.5m_{1} V_{1} ^{2} + 0.5m_{2} V_{2} ^{2}\\0.5(0.3) (2.4) ^{2} + 1.2 = 0.5(0.3) V_{1} ^{2} + 0.5(0.8)V_{2} ^{2}\\[/tex]

[tex]2.064 = 0.15 V_{1} ^{2} + 0.4V_{2} ^{2}[/tex].......(3)

Substitute equation (2) into equation (3)

[tex]2.064 = 0.15 V_{1} ^{2} + 0.4(\frac{0.72 - 0.3V_{1} }{0.8}) ^{2}\\2.064 = 0.15 V_{1} ^{2} + 0.4(\frac{0.5184 - 0.432V_{1} + 0.09V_{1} ^{2} }{0.64}) \\1.32096 = 0.096 V_{1} ^{2} + 0.20736 - 0.1728V_{1} + 0.036V_{1} ^{2} \\0.132 V_{1} ^{2} - 0.1728V_{1} - 1.1136 = 0\\V_{1} = 3.632 m/s[/tex]

Substituting [tex]V_{1}[/tex] into equation(2)

[tex]V_{2} = \frac{0.72 - 0.3 *3.632}{0.8}\\V_{2} = \frac{0.72 - 0.3 *(3.632)}{0.8}\\V_{2} = 0.462 m/s[/tex]

Name and draw the devices that can convert the analog signal to digital

Answers

Answer:

Analog to digital converters

Explanation:

An analog-to-digital converter (ADC)  is a device that converts analog signals such as sound into digital signals. Analog information is transmitted by modulating the signal and then amplifying the signal's strength. The conversion from analog to digital involves quantization of the input thereby reducing error or noise. The ADC produces the output data as a series of digital values (0's and 1's) with fixed precision.

Answer:

Analog to digital converter.

Explanation:

Three important type that covert analog signal to digital

1 flash ADC

2 Digital Ramp ADC

3 successive Approximation

The carbon isotope C-14 is used for carbon dating. C-14 (mass 2.34 x 10-26 kg) decays by beta-decay, in which the nucleus emits an electron (the beta particle) and a subatomic particle called a neutrino. In one such decay, the electron and neutrino are emitted at right angles to each other. The electron (mass 9.11 x 10-31 kg) has a speed of 5.0 x 107 m/s and the neutrino has a momentum of 8.0 x 10-24 kg m/s. What is the recoil speed of the daughter nucleus?

Answers

Answer:

Explanation:

We shall apply the law of conservation of momentum to calculate the momentum and the speed of daughter nucleus .

Since the velocity of electron is very high we shall apply relativistic formula to calculate its momentum .

= [tex]\frac{mv}{\sqrt{1-(\frac{v}{c})^2 } }[/tex]

[tex]= \frac{9.11 \times 10^{-31}\times 5\times 10^7}{\sqrt{1-(\frac{5\times10^7}{3\times 10^8})^2 } }[/tex]

45.55 x 10⁻²⁴ x 1.176

= 53.58 x 10⁻²⁴ .

momentum of neutrino = 8 x 10⁻²⁴ . They are perpendicular to each other so total momentum

= √ [( 53.58 x 10⁻²⁴ )²+(8 x 10⁻²⁴)²]

= 54.17 x 10⁻²⁴

Hence the momentum of recoiled daughter nucleus will be same but in opposite direction

velocity of recoil = momentum / mass

= 54.17 x 10⁻²⁴ / 2.34 x 10⁻²⁶

= 23.15 x 10² m /s

Give 2 examples for Newton’s first law of motion.​

please answer this question!!!!!

Answers

This means it doesn't change its velocity and it doesn't have momentum. 3. Examples of Newton's 1st Law  If you slide a hockey puck on ice, eventually it will stop, because of friction on the ice. It will also stop if it hits something, like a player's stick or a goalpost.

A machinist needs to remove a tight-fitting pin of material A from a hole in a block made of material B. The machinist heats both the pin and the block to the same high temperature and removes the pin easily. What statement relates the coefficient of thermal expansion of material A to that of material B?
a. The situation is not possible, heating block B will shrink the hole in the material as the material expands with increasing temperature
b. Material B has the same coefficient of expansion as does material A
c. Material B has a negative coefficient of expansion and A has a positive coefficient of expansion
d. Material A has a greater coefficient of expansion than does material B
e. Material B has a greater coefficient of expansion than does material A

Answers

Answer:

C. Material B has a negative coefficient of expansion and A has a positive coefficient of expansion

Explanation:

If both material A and material B have the same coefficient of thermal expansion and they were heated to same temperature, both will expand making it impossible to remove the pin from the hole.

Also, if the coefficient of thermal expansion of any of the materials is higher than the other and they were subjected to the same temperature, the material with lower coefficient of thermal expansion will expand, making it impossible to remove the pin.

However, materials with negative coefficient of thermal expansion will contract on heating instead of expanding, while materials with positive  coefficient of expansion will expand on heating. This makes it possible to remove the pin from the hole in the block.

A segment of wire of length L is along the x axis centered at x=0. Which of the following is a correct integral expression for the magnetic field at point P (centered on the wire segment at y=b) due to the current I flowing left to right in the segment of length L? In all answers below the limits of integration are from -L/2 to L/2.
a. μ0I/4π∫ dx b/(b2 + x2)3/2 kb. μ0I/4π∫ dx b/(b2 + x2)3/2 j c. μ0I/4π∫ dx /(b2 + x2) kd. -μ0I/4π∫ dx /(b2 + x2)1/2 ke. none of 1-5

Answers

Answer:

b. μ0I/4π∫ dx b/(b2 + x2)³/² j

Explanation:

 The wire of length L centered at origin ( x =0 and y=0 ) carries current of I . We have to find magnetic field at point ( x = 0 , y = b ) .

First of all we shall consider magnetic field due to current element idx which is at x distance away from origin . magnetic field

dB = [tex]\frac{\mu _0idx}{4\pi(x^2+b^2)^2 }[/tex]

component of magnetic field along y- axis at point P

[tex]\frac{\mu _0idx}{4\pi(x^2+b^2)^2 }cos\theta[/tex]

where θ is angle between y - axis and dE .

component of magnetic field along y- axis at point P

[tex]\frac{\mu _0idx}{4\pi(x^2+b^2)^2 }\times \frac{b}{\sqrt{x^2+b^2} }[/tex]

[tex]\frac{\mu _0ibdx}{4\pi(x^2+b^2)^\frac{3}{2} }[/tex]

The same magnetic field will also exist due to current element dx at x distance away on negative x - axis

The perpendicular component will cancel out .

This is magnetic field dE due to small current element

Magnetic field due to whole wire

[tex]\int\limits^\frac{L}{2} _\frac{-L }{ 2 } }\frac{\mu _0ibdx}{4\pi(x^2+b^2)^\frac{3}{2} } \, dx[/tex]

An antiproton is identical to a proton except it has the opposite charge, −e. To study antiprotons, they must be confined in an ultrahigh vacuum because they will annihilate−producing gamma rays−if they come into contact with the protons of ordinary matter. One way of confining antiprotons is to keep them in a magnetic field. Suppose that antiprotons are created with a speed of 1.5 × 10^4 m/s and then trapped in a 4.5 mT magnetic field.What minimum diameter must the vacuum chamber have to allow these antiprotons to circulate without touching the walls?Express your answer with the appropriate units.d = _________

Answers

Answer:

Explanation:

We know that, the force responsible for circulating in circular path is the centripetal force given by the force on charged particle due to magnetic field.

Here the charge is antiproton is

p = -1.6 * 10⁻¹⁹C

the speed of proton is given by 1.5 * 10 ⁴ m/s

the magnetic field is B = 4.5 * 10⁻³T

we have force due to magnetic field is equal to centripetal force

Bqv = mv² / r

Bq = mv / r

[tex]r = \frac{mv}{Bq} \\\\r=\frac{mv}{Bq} \\\\r=\frac{1.67 \times 10^-^2^7\times 1.5 \times 10^4}{4.5 \times 10^-^3\times 11.6\times 10^-^1^9} \\\\r=347.9\times 10^-^4\\\\r=3.479cm[/tex]

The diameter d of the vacuum chamber have to allow these antiprotons to circulate without touching the walls is

d = 2r

d = 2 * 3.479

d = 6.958

d ≅ 7cm

Write the second law of motion’s formula and its unit.​

please answer this question, for 13 points!!!!!!!!!

Answers

Answer:

The Formula Is F = m * a And It's Units Is (kg)(m/s2)

Explanation:

The brake in most cars makes use of a hydraulic system. This system consists of a fluid filled tube connected at each end to a piston. Assume that the piston attached to the brake pedal has a cross sectional area of 3 cm2 and the piston attached to the brake pad has a 2 cross section area of 15 cm . When you apply a force of 50 Newton to the piston attached to the brake pedal, how much will be the force at the brake pad

Answers

Answer:

The force at the brake pad = 250 N

Explanation:

The hydraulic brake system works on the Pascal's Principle for pressure transmission in fluids; the pressure applied to a fluid is transmitted undiminished in all directions.

For hydraulic systems, the pressure applied to the brake pedal is transmitted undiminished through the fluid filled tube, connected at each end to a piston, to the brake pad.

Hence, mathematically,

P(brake pedal) = P(break pad)

Pressure is given as the force applied divided by the cross sectional Area perpendicular to the direction of applied force.

P(brake pedal) = (Force applied on the brake pedal) ÷ (Cross Sectional Area of the brake pedal)

Force applied on the brake pedal = 50 N

Cross Sectional Area of the brake pedal = 3 cm²

P(brake pedal) = (50/3) = 16.67 N/cm²

P(brake pad) = P(brake pedal) = 16.67 N/cm²

P(brake pad) = (Force applied on the brake pad) ÷ (Cross Sectional Area of the brake pad)

Force applied on the brake pad = F = ?

Cross Sectional Area of the brake pad = 15 cm²

16.67 = (F/15)

F = 16.67 × 15 = 250 N

Hence, the force at the brake pad = 250 N

Hope this Helps!!!

A ladder 7.90 m long leans against the side of a building. If the ladder is inclined at an angle of 66.0° to the horizontal, what is the horizontal distance from the bottom of the ladder to the building? 10.3 Incorrect: Your answer is incorrect.

Answers

Answer:3.21 m

Explanation:

Given

Length of ladder [tex]L=7.9\ m[/tex]

inclination of ladder [tex]\theta =66^{\circ}[/tex]

If x is the  horizontal distance between building and ladder then,

Using trigonometric relation

we get

[tex]\cos \theta =\frac{x}{L}[/tex]

[tex]x=L\cos \theta [/tex]

[tex]x=7.9\times \cos (66)[/tex]

[tex]x=3.21\ m[/tex]

A ball is kicked horizontally with a speed of 5.0 ms-1 from the roof of a house 3 m high. When will the ball hit the ground?

Answers

Answer:

the time taken for the ball to hit the ground is 0.424 s

Explanation:

Given;

velocity of the ball, u = 5 m/s

height of the house which the ball was kicked, h = 3m

Apply kinematic equation;

h = ut + ¹/₂gt²

where;

h is height above ground

u is velocity

g is acceleration due to gravity

t is the time taken for the ball to hit the ground

Substitute the given values and solve for t

3 = 5t + ¹/₂(9.8)t²

3 = 5t + 4.9t²

4.9t² + 5t -3 = 0

a = 4.9, b = 5, c = -3

Solve for t using formula method

[tex]t = \frac{-5 +/-\sqrt{5^2-4(4.9*-3)}}{2(4.9)} = \frac{-5+/-(9.154)}{9.8} \\\\t = \frac{-5+9.154}{9.8} \ or \ \frac{-5-9.154}{9.8} \\\\t = \frac{4.154}{9.8} \ or \ \frac{-14.154}{9.8} \\\\t = 0.424 \ sec \ or -1.444 \ sec\\\\Thus, t = 0.424 \ sec[/tex]

Light requires 4.5 years to travel from the nearest star to earth. If we could travel there in a spaceship going 90% of the speed of light, the trip would require 5.0 years according to clocks on earth. How much time would pass for the passengers in the ship

Answers

Answer:

Time according to earth clock (T0) = 0.22 years (Approx)

Explanation:

Given:

Time taken by light = 4.5 years

Time taken by ship = 5 years

Speed of light = c

Speed of ship (v) = 90% of c = 0.9c

Find:

Time according to earth clock (T0) = ?

Computation:

Time dilation is ,

[tex]T(Difference) = \frac{T0}{\sqrt{1-\frac{v^2}{c^2} } }\\\\ (5-4.5)= \frac{T0}{\sqrt{1-\frac{(0.9c)^2}{c^2} } }\\\\ 0.5=\frac{T0}{\sqrt{1-0.81} }\\\\T0 =0.2179[/tex]

Time according to earth clock (T0) = 0.22 years (Approx)

Three balls, with masses of 3m,2m and m, are fastened to a massless rod of length L. The rotational inertias about the ledt

Answers

I = MR^2

The Attempt at a Solution:::

I total = (3M)(0)^2 + (2M)(L/2)^2 + (M)(L)^2

I total = 3ML^2/2

It says the answer is 3ML^2/4 though.

⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔

mark it as brainliest.... ✌✌✌

The rotational inertia about the left is [tex]3ML^{2} /2[/tex].

What is meant by inertia?Inertia, property of a body by virtue of which it opposes any agency that attempts to put it in motion or, if it is moving, to change the magnitude or direction of its velocity. Inertia is a passive property and does not enable a body to do anything except oppose such active agents as forces and torques.To calculate the rotational inertia about the left

[tex]I = I1 + I2 + I3\\ I= 3M(0^{2}) + 2M(L/2 )^{2} + M(L)^{2} \\I = 3ML^{2} /2[/tex]

The rotational inertia about the left is [tex]3ML^{2} /2[/tex]

To learn more about Inertia refer:https://brainly.com/question/18113232

#SPJ2

Fill in the blanks for the following:
Arigid container of volume 100.0 Liters contains Oxygen gas. It is at room temperature (293 Kelvin), and is at atmospheric pressure (absolute pressure, meaning the gauge pressure is zero). Therefore, the number of moles of Oxygen molecules . Also, the rms-velocity inside is ________of these Oxygen molecules is most nearly ______, which is______ the rms-speed of the Nitrogen molecules just outside the container (the rigid container and its surroundings are in thermal equilibrium).

Answers

Answer:

a. 4.21 moles

b. 478.6 m/s

c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank

Explanation:

Volume of container = 100.0 L

Temperature = 293 K

pressure = 1 atm = 1.01325 bar

number of moles n = ?

using the gas equation PV = nRT

n = PV/RT

R = 0.08206 L-atm-[tex]mol^{-1}[/tex][tex]K^{-1}[/tex]

Therefore,

n = (1.01325 x 100)/(0.08206 x 293)

n = 101.325/24.04 = 4.21 moles

The equation for root mean square velocity is

Vrms = [tex]\sqrt{\frac{3RT}{M} }[/tex]

R = 8.314 J/mol-K

where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol

Vrms = [tex]\sqrt{\frac{3*8.314*293}{0.0319} }[/tex]= 478.6 m/s

For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship

[tex]\frac{Voxy}{Vnit}[/tex] = [tex]\sqrt{\frac{Mnit}{Moxy} }[/tex]

where

Voxy = root mean square velocity of oxygen = 478.6 m/s

Vnit = root mean square velocity of nitrogen = ?

Moxy = Molar mass of oxygen = 31.9 g/mol

Mnit = Molar mass of nitrogen = 14.00 g/mol

[tex]\frac{478.6}{Vnit}[/tex] = [tex]\sqrt{\frac{14.0}{31.9} }[/tex]

[tex]\frac{478.6}{Vnit}[/tex] = 0.66

Vnit = 0.66 x 478.6 = 315.876 m/s

the root mean square velocity of the oxygen gas is

478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank

a small sphere of
mass 0.25 g that carries a charge of 9.0 × 10−10 C.
Two parallel vertical infinite charged sheets of
charge densities σ1= -30 × 10−6 C/m2 and σ2= ab ×
10−6 C/m2 respectively. The sphere is attached to
one end of a very thin silk string 5.0 cm long. The
other end of the string is attached to the 2nd sheet as
shown in the figure. At equilibrium, the string will
make an angle (ϴ) with the vertical. Calculate the
angle that the string makes with the vertical?

Answers

Answer:

θ = 39.7º

Explanation:

In this exercise we must use Newton's second law for the sphere, at the equilibrium point we write the equations in each exercise; we will assume that plate 1 is on the left

Y Axis

       [tex]T_{y}[/tex] -W = 0

       [tex]T_{y}[/tex] = W

X axis

         -[tex]F_{e1}[/tex] - F_{e2} + Tₓ = 0

let's use trigonometry to find the components of the tension, we measure the angle with respect to the vertical

         sin θ = Tₓ / T

         cos θ = T_{y} / t

         Tₓ = T sin θ

         T_{y} = T cos θ

let's use gauss's law to find the electric field of each leaf; We define a Gaussian surface formed by a cylinder, so the component of the field perpendicular to the base of the cylinder is the one with electric flow.

         F = ∫ E. dA = [tex]q_{int}[/tex] / ε₀

  in this case the scalar product is reduced to the algebraic product, the flow is towards both sides of the plate

        F = 2E A = q_{int} / ε₀

let's use the concept of surface charge density

        σ = q_{int} / A

we substitute

        2E A = σ A /ε₀

          E = σ / 2ε₀

this is the field created by each plate. The electric force is

        [tex]F_{e}[/tex] = q E

for plate 1 with σ₁ = -30 10⁻⁶ C / m²

         F_{e1}  = q σ₁ /2ε₀

for plate 2 with s2 = ab 10⁻⁶ C / m², for the calculations a value of this charge density is needed, suppose s2 = 10 10⁻⁶ C / m²

          F_{e2} = q σ₂ /2ε₀

we substitute and write the system of equations

           T cos θ = mg

          - q σ₁ / 2ε₀  - q σ₂ /2ε₀  + T sinθ = 0

we introduce t in the second equations

          - q /2 ε₀  (σ₁ + σ₂) + (mg / cos θ) sin θ = 0

          mg tan θ = q /2ε₀   (σ₁ + σ₂)

          θ = tan -1 (q / 2ε₀ mg (σ₁ + σ₂)

data indicates the mass of 0.25 g = 0.25 10⁻³ kg

give the charge density on plate 2, suppose ab = 10 10⁻⁶ C / m²

let's calculate

         θ = tan⁻¹ (9.0 10⁻¹⁰ (30 + 10) 10⁻⁶ / (2  8.85 10⁻¹² 0.25 10⁻³ 9.8))

         θ = tan⁻¹ 8.3 10⁻¹)

         θ = 39.7º

On the moon, what would be the force of gravity acting on an object that has a mass of 7kg?

Answers

Answer:

Force of gravity, F = 70 N      

Explanation:

It is required to find the force of gravity acting on an object that has a mass of 7 kg. Force of gravity always acts in downward direction.

The force of gravity is equal to the weight of an object. It is given by :

[tex]F=mg[/tex]

g = acceleration due to gravity, for Earth, g = 10 m/s²

So,

[tex]F=7\times 10\\\\F=70\ N[/tex]

So, 70 N of force of acting on an object.

Popping popcorn is a thermodynamic process. Assume the pot remains covered while popcorn is being popped and the contents of the pot are the system. Which of the following correctly describes some feature of the system or what happens to the system undergoing this thermodynamic process?A. W > 0.B. Q>0.C. Tincreases.D. AU < 0.E. Pincreases.F. V-constant.

Answers

Answer:

the answer is C

Explanation:

Mark me brainlest

A tank holds a 2.38-m thick layer of oil that floats on a 1.24-m thick layer of brine. Both liquids are clear and do not intermix. Point O is at the bottom of the tank, on a vertical axis. The indices of refraction of the oil and the brine are 1.27 and 1.81, respectively. A ray originating at O reaches the brine-oil interface at the critical angle. What is the distance of this point from the axis?

Answers

Answer:

1.22m

Explanation:

Since

sinθ  =  refraction-of-the-oil/refraction-of-the-brine =1.27/1.81 = 0.702

θ = [tex]sin^-^1[/tex](0.702)

Hence

Critical angle = θ = 44.58°

tan(θ) = d/1.24

tan(44.58°) = d/1.24

Hence, 0.98 = d/1.24

The distance d = 0.98 x 1.24 = 1.22m

2. If electrons are removed from an object, is the object positively or negatively
charged

Answers

positive

Because adding electrons makes an object to be negative and removing makes it to be positive

Say you want to make a sling by swinging a mass M of 2.3 kg in a horizontal circle of radius 0.034 m, using a string of length 0.034 m. You wish the mass to have a kinetic energy of 13.0 Joules when released. How strong will the string need to be

Answers

Answer:

T = 764.41 N

Explanation:

In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:

[tex]F_c=m\frac{v^2}{r}[/tex]  (1)

m: mass object = 2.3 kg

r: radius of the circular orbit = 0.034 m

v: tangential speed of the object

However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:

[tex]K=\frac{1}{2}mv^2[/tex]

You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:

[tex]v^2=\frac{2K}{m}=\frac{2(13.0J)}{2.3kg}=11.3\frac{m^2}{s^2}[/tex]

you replace this value of v in the equation (1). Also, you replace the values of r and m:

[tex]F_c=(2.3kg)(\frac{11.3m^2/s^2}{0.034})=764.41N[/tex]

hence, the tension in the string must be T =  Fc = 764.41 N

Other Questions
PLEASE HELP WITH MATH In a civil case the jurya determines guilt or innocenceb. finds for the plaintiff or the defendantc. determines whether or not to give the death penaltyd. is not responsible for determining the trial's outcome because the judge makes that decisionPlease select the best answer from the choices provided ROMEO AND JULIET - ACT FOURScene 11. How does Juliet act when she meets Paris?2. What does Juliet threaten to do if the friar does not help her?3. What does the friar suggest as a plan?4. What is the friar's real reason for wanting to slow down the wedding preparations?5. According to Paris, what is Capulet's reason for wanting Juliet to marry so quickly?6. What does Juliet say she would rather face than marry Paris?7. What will happen when Paris comes to wake Juliet?Act 4 LETTER TO A CHARACTERWrite a letter in the point of viewof a character to another abouttheir experiences in the story. Forexample, you could write as Jemwriting to Dill describing whathappened the night he wasattacked by Bob Ewell. Minimum250 words. when combined with alcohol or other depressant drugs the depressant effect of antihistamines can be much write the equation of a vertical line that passes through the points (-4,4) Which property is used in the problem below?2(x+4)= 2x+8O the associative propertyO the commutative propertyO the distributive propertyO the additive identity property What is the value of x in the equation 2 (x + 3) = 4 (x minus 1)?1235 The area of trapezoid TRAP is 100. Furthermore, TR=32, AP=8, and TP=RA. If T=R what is the ;length of segment TP? The temperature of the cofffe depends on the number of minutes it sits on the desk. Hey math ppl, i need some help pls, question in photo Capica que se obtiene sumando 700 al numero que distingue a un famoso agente secreto find the coordinates of the vertices of the triangle after a reflection across the line x= -1 and then across the line y = 1.F(-2,-3), G(-3,2), H(1,-1) what is the volume please help. What is the nucleus of a cell made up of?? Find the components of the vertical force Bold Upper FFequals=left angle 0 comma negative 4 right angle0,4 in the directions parallel to and normal to the plane that makes an angle of StartFraction pi Over 3 EndFraction 3 with the positive x-axis. Show that the total force is the sum of the two component forces. where is amylase produced in the body Which question correctly completes this conversation? Ana: _______________ Isabel: Uso la falda talla M. Y t? Someone to help me please Hyphens can be similarly used as dashes. a) True b) False