The animation shows a ball which has been kicked upward at an angle. Run the animation to watch the motion of the ball. Click initialize to set up the animation and start to run it.

Ghosts are left by the ball once per second. The animation can also be paused and moved forward in single frame mode using the step button. The cursor can be used to read the (x,y) coordinates of a position in the grid by holding down the left mouse button. Assume the grid coordinates read out in meters. When entering components, presume that x is positive to the right and y is positive upwards. Note that this ball is NOT being kicked on Earth. Do not expect an acceleration of 9.80 m/s2 downward, though you can presume that gravity is acting straight down. Use this animation to answer the following questions. Note that there are a number of different ways to go about each of the following questions. Your answer needs to be within 5% of the correct answer for credit. Please enter your answer to 3 significant digits.

What is the maximum height which the ball reaches? 42.24 m

What is the horizontal component of the initial velocity of the ball? 5.57 m/s

What is the vertical component of the initial velocity of the ball? 16.18 m/s

What is the vertical component of the acceleration of the ball? _____????

Answers

Answer 1

Answer:

The acceleration of the ball is  [tex]a_y = - 0.3672 \ m/s^2[/tex]

Explanation:

From the question we are told that

       The maximum height the ball reachs is [tex]H_{max} = 42.24 \ m[/tex]

       The horizontal component of the initial velocity of the ball is [tex]v_{ix} = 5.57 \ m/s[/tex]

       The vertical component of the initial velocity of the ball is [tex]v_{iy} = = 16.18 m/s[/tex]

The vertically motion of the ball can be mathematically represented as

       [tex]v_{fy}^2 = v_{iy} ^2 + 2 a_{y} H_{max}[/tex]

Here the final velocity at the maximum height is zero so [tex]v_{fy} = 0 \ m/s[/tex]

Making the acceleration [tex]a_y[/tex] the subject we have

        [tex]a_y = \frac{v_{iy} ^2}{2H_{max}}[/tex]

substituting values

      [tex]a_y = - \frac{5.57^2}{2* 42.24}[/tex]

      [tex]a_y = - 0.3672 \ m/s^2[/tex]

The negative sign shows that the direction of the acceleration is in the negative y-axis


Related Questions

Two identical objects A and B fall from rest from different heights to the ground. If object B takes twice as long as object A to reach the ground, what is the ratio of the heights from which A and B fell

Answers

Answer:

1:4

Explanation:

We have, two identical objects A and B fall from rest from different heights to the ground.

Object B takes twice as long as object A to reach the ground. It is required to find the ratio of the heights from which A and B fell. Let [tex]h_A\ \text{and}\ h_B[/tex] are the height for A and B respectively. So,

[tex]\dfrac{h_A}{h_B}=\dfrac{(1/2)gt_A^2}{(1/2)gt_B^2}\\\\\dfrac{h_A}{h_B}=\dfrac{t_A^2}{t_B^2}[/tex]

We have,

[tex]t_B=2t_A[/tex]

So,

[tex]\dfrac{h_A}{h_B}=\dfrac{t_A^2}{(2t_B)^2}\\\\\dfrac{h_A}{h_B}=\dfrac{1}{4}[/tex]

So, the ratio of the heights from which A and B fell is 1:4.

The label on a battery-powered radio recommends the use of a rechargeable nickel-cadmium cell (nicads), although it has a 1.25-V emf, whereas an alkaline cell has a 1.58-V emf. The radio has a 3.65 Ω resistance. How much more power is delivered to the radio by alkaline cell, which has an internal resistance of 0.200Ω than by an nicad cell, having an internal resistance of 0.0.040Ω?

Answers

Answer:

0.2 W more power than nicad cell is delivered by alkaline cell

Explanation:

FOR NICKEL-CADMIUM CELL (nicads):

First we find the current supplied to radio by the cell. For this purpose, we use the formula:

I = E/(R+r)

where,

I = current supplied

E = emf of cell = 1.25 V

R = resistance of radio = 3.65 Ω

r = internal resistance of cell = 0.04 Ω

Therefore,

I = (1.25 V)/(3.65 Ω + 0.04 Ω)

I = 0.34 A

Now, we calculate the power delivered to radio by following formula:

P = VI

but, from Ohm's Law:   V = IR

Therefore,

P = I²R

where,

P = Power delivered = ?

I = current = 0.34 A

R = Resistance of radio = 3.65 Ω

Therefore,

P = (0.34 A)²(3.65 Ω)

P = 0.41 W

FOR ALKALINE CELL:

First we find the current supplied to radio by the cell. For this purpose, we use the formula:

I = E/(R+r)

where,

I = current supplied

E = emf of cell = 1.58 V

R = resistance of radio = 3.65 Ω

r = internal resistance of cell = 0.2 Ω

Therefore,

I = (1.58 V)/(3.65 Ω + 0.2 Ω)

I = 0.41 A

Now, we calculate the power delivered to radio by following formula:

P = VI

but, from Ohm's Law:   V = IR

Therefore,

P = I²R

where,

P = Power delivered = ?

I = current = 0.41 A

R = Resistance of radio = 3.65 Ω

Therefore,

P = (0.41 A)²(3.65 Ω)

P = 0.61 W

Now, fo the difference between delivered powers by both cells:

ΔP = (P)alkaline - (P)nicad

ΔP = 0.61 W - 0.41 W

ΔP = 0.2 W

Enterprising students set an enormous slip-n-slide (a plastic sheetcovered in water to reduce friction) on flat ground. If the slip-n-slideis 250 m long, how small does the average acceleration have to be fora student starting at 5 m/s to slide to the end

Answers

Answer:

a = -0.05 m/s² (negative sign shows deceleration)

Explanation:

In order, to find out the minimum average acceleration for a student starting at 5 m/s to slide to the end, we can use 3rd equation of motion. 3rd equation of motion is given as follows:

2as = Vf² - Vi²

where,

a = minimum acceleration required = ?

s = minimum distance covered = 250 m

Vf = Final Speed = 0 m/s (for minimum acceleration the student will barely cover 250 m and then stop)

Vi = Initial Velocity = 5 m/s

Therefore,

2a(250 m) = (0 m/s)² - (5 m/s)²

a = - (25 m²/s²)/(500 m)

a = -0.05 m/s² (negative sign shows deceleration)

A wire runs from the top of a pole that is h feet tall to the ground. The wire touches the ground a distance of d feet from the base of the pole. The wire makes an angle of theta with the top of the pole. Express h in terms of theta and d.

Answers

Answer:

A = Tan{-1} d/h

Explanation

Let the angle Theta be A

From identity the angle A has an opposite side d and an adjacent h.

From trigonometry ratio

Tan A = d/h

A = Tan{-1} d/h

One strategy in a snowball fight is to throw a snowball at a high angle over level ground. Then, while your opponent is watching that snowball, you throw a second one at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 26.0 m/s. The first one is thrown at an angle of 67.5° with respect to the horizontal. At what angle should you throw the second snowball to make it hit the same point as the first?

Answers

Answer:

  22.5°

Explanation:

Short answer: The trajectories will hit the same target when the projectile is launched at complementary angles. The second angle is 90° -67.5° = 22.5°.

__

Longer answer: The horizontal speed of the snowball launched at angle α with speed s is ...

  vh = s·cos(α)

Then the horizontal distance at time t is ...

  x = vh·t

and the time taken to get to some distance x is ...

  t = x/vh = x/(s·cos(α))

The equation for the vertical motion of the projectile is ...

  y = -4.9t² +s·sin(α)·t

Substituting the above expression for t, we have y in terms of x:

  y = -4.9x²/(s·cos(α))² +(s·sin(α)·x)/(s·cos(α))

Factoring gives ...

  y = (x/(cos(α))(-4.9x/(s²·cos(α)) +sin(α))

The height y will be zero at x=0 and at ...

  0 = -4.9x/(s²·cos(α)) +sin(α)

  x = s²·sin(α)·cos(α)/4.9 = (s²/9.8)sin(2α)

So, for some alternate angle β, we want ...

  sin(2α) = sin(2β)

We know this will be the case for ...

  2β = 180° -2α

  β = 90° -α

The second snowball should be thrown at an angle of 90°-67.5° = 22.5° to make it hit the same point as the first.

A plasma is a gas of ionized (charged) particles. When plasma is in motion, magnetic effects "squeeze" its volume, inducing inward pressure known as a pinch. Consider a cylindrical tube of plasma with radius R and length L moving with velocity v along its axis. If there are n ions per unit volume and each ion has charge q , we can determine the pressure felt by the walls of the cylinder.

Required:
a. What is the volume charge density p in terms of n and q?
b. The thickness of the cylinder surface is n^1/3. What is the surface charge density σ in terms of n and q?

Answers

Answer:

 a

    The volume charge density is  [tex]\rho = nq[/tex]

b

    The surface charge density is  [tex]\sigma = n^{\frac{2}{3} } q[/tex]

Explanation:

From the question we are told that

    The radius is  R

     The length is L

       The velocity is  v

        The number of ions per unit volume is  n

         The charge is  q

          The thickness of the cylinder surface is  [tex]n^{\frac{1}{3} }[/tex]

The volume charge density is mathematically represented as

      [tex]\rho = nq[/tex]

The surface charge density is mathematically represented as

    [tex]\sigma = \rho n^{\frac{1}{3} }[/tex]

substituting for  [tex]\rho[/tex]

     [tex]\sigma = n * n^{\frac{1}{3} } q[/tex]

     [tex]\sigma = n^{\frac{2}{3} } q[/tex]

consider an electric dipole lying along x-axis with mid-point O as the origin of coordinate system.find the electric potential V at point P due to dipole.in addition to this,find electric potentials for special cases. when P lies on the axial line and when P lies on the equatorial line.

Answers

Answer:

axial   V = 0

equatorial  V = k q 2a / (x² -a²),  V = k q 2x / (a² -x²)

Explanation:

A dipole is a system formed by two charges of equal magnitude, but different sign, separated by a distance 2a; let's look for the electrical potential in an axial line

       V = k (q / √(a² + y²) - q /√ (a² + y²))

        V = 0

the potential on the equator

we place the positive charge to the left and perform the calculation for a point outside the dipole

    V = k (q / (x-a) - q / (x + a))

    V = k q 2a / (x² -a²)

 we perform the calculation for a point between the dipo charges

     V = k (q / (a-x) - q / (a ​​+ x))

     V = k q 2x / (a² -x²)

If Q = 16 nC, a = 3.0 m, and b = 4.0 m, what is the magnitude of the electric field at point P?

Answers

In BPC

tan\theta =a/b = 3/4

\theta = tan^-1(0.75)

\theta = 36.87 deg

BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m

Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C

Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C

Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C

Net electric field along X-direction is given as

Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C

Net electric field along X-direction is given as

Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C

Net electric field is given as

E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C

Consider the boundary-value problem introduced in the construction of the mathematical model for the shape of a rotating string: T d2y dx2 + rhoω2y = 0, y(0) = 0, y(L) = 0. For constants T and rho, define the critical speeds of angular rotation ωn as the values of ω for which the boundary-value problem has nontrivial solutions. Find the critical speeds ωn and the corresponding deflections yn(x). (Give your answers in terms of n, making sure that each value of n corresponds to a unique critical speed.)

Answers

Answer:

[tex]y_n(x) =C_n \sin \sqrt{\frac{\rho}{T} } w_nx=C_n \sin \sqrt{\frac{\rho}{T} } \sqrt{\frac{T}{\rho} } \frac{n \pi}{L} x[/tex]

[tex]y_n(x) = C_n \sin \frac{n \pi x}{L}[/tex]

Explanation:

The given differential equation is

[tex]T\frac{d^2y}{dx^2} + \rho w ^2y=0[/tex] and y(0) = 0, y(L) =0

where T and ρ  are constants

The given rewrite as

[tex]\frac{d^2y}{dx^2} + \frac{\rho w^2}{T} y=0[/tex]

auxiliary equation is

[tex]m^2+ \frac{\rho w^2}{T} =0\\\\m= \pm\sqrt{\frac{\rho}{T} } wi[/tex]

Solution of this de is

[tex]y(x)=C_1 \cos \sqrt{\frac{\rho}{t} } wx + C_2 \sin \sqrt{\frac{\rho}{T} } wx[/tex]

y(0)=0 ⇒ C₁ = 0

[tex]y(x) = C_2 \sin \sqrt{\frac{\rho}{T} } wx[/tex]

y(L) = 0 ⇒

[tex]C_2 \sin \sqrt{\frac{\rho}{T} } wL=0[/tex]

we need non zero solution

⇒ C₂ ≠ 0 and

[tex]\sin \sqrt{\frac{\rho}{T} } wL=0[/tex]

[tex]\sin \sqrt{\frac{\rho}{T} } wL=0 \rightarrow \sqrt{\frac{\rho}{T} } wL=n \pi[/tex]

[tex]w_n = \sqrt{\frac{T}{\rho} } \frac{n \pi}{L}[/tex]

solution corresponding these [tex]w_n[/tex] values

[tex]y_n(x) =C_n \sin \sqrt{\frac{\rho}{T} } w_nx=C_n \sin \sqrt{\frac{\rho}{T} } \sqrt{\frac{T}{\rho} } \frac{n \pi}{L} x[/tex]

[tex]y_n(x) = C_n \sin \frac{n \pi x}{L}[/tex]

linear momentum is the product of mass and acceleration.​

Answers

Answer:

false

Explanation:

Linear momentum is the product of an objects mass and velocity

p=m×v

Answer:

Linear momentum is defined as the product of a system's mass multiplied by its velocity. In symbols, linear momentum is expressed as p = mv. ... Thus the greater an object's mass or the greater its velocity, the greater its momentum. Momentum p is a vector having the same direction as the velocity v.

Explanation:

HOPE THIS HELPS U STAY SAFE

Think of something from everyday life that follows a two-dimensional path. It could be a kicked football, a bus that's turning a corner, or a person jogging around a track, etc. Describe your scenario in detail, and then identify the acceleration at each point. When is the acceleration vector not aligned with the direction of travel

Answers

Answer:

Let us consider the case of a bus turning around a corner with a constant velocity, as the bus approaches the corner, the velocity at say point A is Va, and is tangential to the curve with direction pointing away from the curve. Also, the velocity at another point say point B is Vb and is also tangential to the curve with direction pointing away from the curve. Although the velocity at point A and the velocity at point B have the same magnitude, their directions are different (velocity is a vector quantity), and hence we have a change in velocity. By definition, an acceleration occurs when we have a change in velocity, so the bus experiences an acceleration at the corner whose direction is away from the center of the corner.

The acceleration is not aligned with the direction of travel because the change in velocity is at a tangent (directed away) to the direction of travel of the bus.

A child at the top of a slide has a gravatational store of 1800j what is the childs maximum kinetic store as he slides down explain your answer

Answers

Answer:

1800 J

Explanation:

Energy is conserved, so the maximum kinetic energy equals the change in gravitational energy.

⦁ Match the following terms:
⦁ Mass number
⦁ Isotopes
⦁ Nitrogen
⦁ Atomic number

⦁ The number of protons in the nucleus of an atom.
⦁ The number of protons and neutrons in the nucleus of an atom.
⦁ The name of the element with atomic number 7.
⦁ Atoms with the same number of protons, but different number of neutrons.


Answers

Answer:

Mass number - ⦁ The number of protons and neutrons in the nucleus of an atom.

Isotopes - ⦁ Atoms with the same number of protons, but different number of neutrons.

Nitrogen - ⦁ The name of the element with atomic number 7.

Atomic number - ⦁ The number of protons in the nucleus of an atom.

A submarine dives from rest a 100-m distance beneath the surface of an ocean. Initially, the submarine moves at a constant rate of 0.3 m/s2 until reaches a speed of 4 m/s and then lowers at a constant speed. The density of salt water is 1030 kg/m3. The submarine has a hatch with an area of 2 m2 located on the top of the submarine’s body.

a. How much time does it take for the submarine to move down 100 m?

b. Calculate the gauge pressure applied on the submarine at the depth of 100

m.

c. Calculate the absolute pressure applied on the submarine at the depth of

100.

d. How much force is required in order to open the hatch from the inside of

the submarine?

answer this step-by-step, please.

Answers

Answer:

a. Time = 16.11 s

b. Gauge Pressure = 1009400 Pa = 1 MPa  

c. Absolute Pressure = 1110725 Pa + 1.11 MPa

d. Force = 2.22 MN

Explanation:

a.

For the accelerated part of motion of submarine we can use equations of motion.

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

where,

t₁ = time taken during accelerated motion = ?

Vf = final velocity = 4 m/s

Vi = Initial Velocity = 0 m/s   (Since, it starts from rest)

a = acceleration = 0.3 m/s²

Therefore,

t₁ = (4 m/s - 0 m/s)/(0.3 m/s²)

t₁ = 13.33 s

Now, using 2nd equation of motion:

d₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

where,

d₁ = the depth covered during accelerated motion

Therefore,

d₁ = (0 m/s)(13.33 s) + (0.5)(0.3 m/s²)(13.33 s)²

d₁ = 88.89 m

Hence,

d₂ = d - d₁

where,

d₂ = depth covered during constant speed  motion

d = total depth = 100 m

Therefoe,

d₂ = 100 m - 88.89 m

d₂ = 11.11 m

So, for uniform motion:

s₂ = vt₂

where,

v = constant speed = 4 m/s

t₂ = time taken during constant speed  motion

11.11 m = (4 m/s)t₂

t₂ = 2.78 s

Therefore, total time taken by submarine to move down 100 m is:

t = t₁ + t₂

t = 13.33 s + 2.78 s

t = 16.11 s

b.

The gauge pressure on submarine can be calculated by the formula:

Pg = ρgh

where,

Pg = Gauge Pressure = ?

ρ = density of salt water = 1030 kg/m³

g = 9.8 m/s²

h = depth = 100 m

Therefore,

Pg = (1030 kg/m³)(9.8 m/s²)(100 m)

Pg = 1009400 Pa = 1 MPa

c.

The absolute pressure is given as:

P = Pg + Atmospheric Pressure

where,

P = Absolute Pressure = ?

Atmospheric Pressure = 101325 Pa

Therefore,

P = 1009400 Pa + 101325 Pa

P = 1110725 Pa + 1.11 MPa

d.

Since, the force to open the door must be equal to the force applied to the door by pressure externally.

Therefore, the  force required to open the door can be found out by the formula of pressure:

P = F/A

F = PA

where,

P = Absolute Pressure on Door = 1110725 Pa

A = Area of door = 2 m²

F = Force Required to Open the Door = ?

Therefore,

F = (1.11 MPa)(2 m²)

F = 2.22 MN

Using the following information to determine the young's modulus for the unknown material, the radius of the material is 4 cm. while gravitational
acceleration g=10m/s?
initial length (cm) 25
final length (cm)25.7
mass (gm) 200

Answers

Answer:

14285.71N/m2

Explanation:

Young modulus known as modulus of elasticity is defined as;

E = σ/ε

Where E is young modulus

ε is strain defined as extention / length

σ is stress defined as force /area

Let's calculate σ;

Force = mass× gravity =200/1000. × 10 =0.2kg× 10 = 2N

The area impacted by the force is raduis surface of the wire and it's calculated thus;

πr^2 = 22/7 × (0.04)^2 ; 4cm in m = 0.04m=0.005m2

Hence σ = 2/0.005=400N/M2

Let's calculate ε;

ε= extension/ original length

extension = final length - original length

extension=25.7-25=0.7cm= 0.007m

ε= 0.7/25

Hence E = 400/ 0.7/25

E = 400 × 25/ 0.7= 14285.71N/m2

A point charge is located at the center of a thin spherical conducting shell of inner and outer radii r1 and r2, respectively. A second thin spherical conducting shell of inner and outer radii R1 and R2, respectively, is concentric with the first shell. The flux is as follows for the different regions of this arrangement.
Φ = −10.3 ✕ 103 N · m2/C for r < r1Φ = 0 for r1 < r < r2Φ = 36.8 ✕ 103 N · m2/C for r2 < r < R1Φ = 0 for R1 < r < R2Φ = −36.8 ✕ 103 N · m2/C for r > R2

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The  point charge is  [tex]Q_z = -0.0912 \ \mu C[/tex]

The inner shell is  [tex]Q_t = 0.4168 \ \mu C[/tex]

The outer shell is  [tex]Q_w = -0.6514 \ \mu C[/tex]

Explanation:

From the question we are told that

    The inner radius of thin first spherical conducting shell is  [tex]r_1[/tex]

    The outer radius of thin first spherical conducting shell is  [tex]r_2[/tex]

    The inner radius of second thin spherical conducting shell is [tex]R_1[/tex]

    The outer radius of second thin spherical conducting shell is [tex]R_2[/tex]

     The magnetic flux for different region is  [tex]\phi = -10.3 *10^3 N\cdot m^2 /C \ for \ r < r_1[/tex]

    The magnetic flux for first shell is [tex]\phi = 36 * 10^3 N \cdot m^2 /C \ for \ r_2 < r <R_1[/tex]

     The magnetic flux for second shell is [tex]\phi = -36 * 10^3 N \cdot m^2 /C \ for \ r <R_1[/tex]

The magnitude of the point charge is mathematically represented as

                [tex]Q_z = \ \phi_z * \epsilon _o[/tex]

               [tex]Q_z = -10.3*10^{3} * 8.85 *10^{-12}[/tex]

               [tex]Q_z = -9.115*10^{-8} \ C[/tex]

               [tex]Q_z = -0.0912 \ \mu C[/tex]

Considering the inner shell

        [tex]Q_a = \phi_a * \epsilon _o[/tex]

=>    [tex]Q_a = 36 .8 * 10^3 * 8.85*10^{-12}[/tex]

      [tex]Q_a = 32.56*10^{-8} \ C[/tex]

       [tex]Q_a =0.326} \ \mu C[/tex]

Charge on the inner shell is

       [tex]Q_t = Q_a - Q_z[/tex]

                    [tex]Q_t = 0.326} \ \mu - ( -0.0912 \ \mu)[/tex]

                      [tex]Q_t = 0.4168 \ \mu C[/tex]

Considering the outer  shell

     [tex]Q_y = \phi_y * \epsilon_o[/tex]

=>    [tex]Q_y = -36.8 *10^{3} * 8.85*10^{-12}[/tex]

        [tex]Q_y = -32.56*10^{-8} \ C[/tex]

        [tex]Q_y = - 0.326} \ \mu C[/tex]

Charge on the outer shell is

      [tex]Q_w = Q_y - Q_z[/tex]

      [tex]Q_w =- 0.326} \ \mu - ( -0.0912 \ \mu)[/tex]

       [tex]Q_w = -0.6514 \ \mu C[/tex]

 

linear momentum is the product of mass and acceleration​

Answers

Answer:

This statement is false , linear momentum is the product of mass and velocity

Answer:

Linear momentum is defined as the product of a system's mass multiplied by its velocity. In symbols, linear momentum is expressed as p = mv. ... Thus the greater an object's mass or the greater its velocity, the greater its momentum. Momentum p is a vector having the same direction as the velocity v.

Explanation:

hope this helps u stay safe

A 62-kg person jumps from a window to a fire net 20.0 m directly below, which stretches the net 1.4 m. Assume that the net behaves like a simple spring. (a) Calculate how much it would stretch if the same person were lying in it. (b) How much would it stretch if the person jumped from 38 m?

Answers

Answer:

a) x = 0.098

b) x = 2.72 m

Explanation:

(a) To find the stretch of the fire net when the same person is lying in it, you can assume that the net is like a spring with constant spring k. It is necessary to find k.

When the person is falling down he acquires a kinetic energy K, this energy is equal to the elastic potential energy of the net when it is max stretched.

Then, you have:

[tex]K=U\\\\\frac{1}{2}mv^2=\frac{1}{2}kx^2[/tex]        (1)

m: mass of the person = 62kg

k: spring constant = ?

v: velocity of the person just when he touches the fire net = ?

x: elongation of the fire net = 1.4 m

Before the calculation of the spring constant, you calculate the final velocity of the person by using the following formula:

[tex]v^2=v_o^2+2gy[/tex]

vo: initial velocity = 0 m/s

g: gravitational acceleration = 9.8 m/s^2

y: height from the person jumps = 20.0m

[tex]v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(20.0m)}=14\frac{m}{s}[/tex]

With this value you can find the spring constant k from the equation (1):

[tex]mv^2=kx^2\\\\k=\frac{mv^2}{x^2}=\frac{(62kg)(14m/s)^2}{(1.4m)^2}=6200\frac{N}{m}[/tex]

When the person is lying on the fire net the weight of the person is equal to the elastic force of the fire net:

[tex]W=F_e\\\\mg=kx[/tex]

you solve the last expression for x:

[tex]x=\frac{mg}{k}=\frac{(62kg)(9.8m/s^2)}{6200N/m}=0.098m[/tex]

When the person is lying on the fire net the elongation of the fire net is 0.098m

b) To find how much would the net stretch, If the person jumps from 38 m, you first calculate the final velocity of the person again:

[tex]v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(38m)}=27.29\frac{m}{s}[/tex]

Next, you calculate x from the equation (1):

[tex]x=\sqrt{\frac{mv^2}{k}}=\sqrt{\frac{(62kg)(27.29m/s)^2}{6200N/m}}\\\\x=2.72m[/tex]

The net fire is stretched 2.72 m

A) If the person is lying on the net, the net would stretch by : 0.0679 m

B) If the person jumped from 38m, the net would stretch by : 1.61 m

Given data :

Mass of person (m) = 62 kg

Initial height ( H₁ ) = 20 m

Net stretch ( H[tex]_{f}[/tex] ) = -1.2 m

Initial potential energy before jump ( PE₁ ) = mgH₁ = 62 * 9.81 * 20 = 12164.4J

Potential energy after the jump ( PE₂ ) = mgH[tex]_{f}[/tex] = 62 * 9.81 * ( -1.2 ) = -729.86J

The potential spring constant ( SE ) = 1/2 kx²

                                                           = 1/2 * k * ( 1.2 )²

Applying the principle of energy conservation

PE₁ = PE₂ + SE

12164.4 = - 729.86 + 0.5 * k * 1.44

∴ k = ( 12164.4 + 729.86 ) / ( 0.5 * 1.44 )

     = 17908.69

A) Calculate the amount of stretch if same person lies on the net

1/2 kx² = mgx  ---- ( 1 )

Where x = stretch

equation ( 1 ) becomes equation ( 2 )

1/2 kx = mg ----- ( 2 )

x ( amount of stretch ) = ( 2mg ) / k

                                     = ( 2 * 62 * 9.81 ) / 17908.69

                                     = 0.0679 m

B ) Calculate How much the net would stretch if Height = 38 m

Hi = 38 m

MgHi = mgH[tex]_{f}[/tex] + 1/2 kx² ----- ( 3 )

where ; H[tex]_{f}[/tex] = -x

Back to equation ( 3 )

62 * 9.81 * 38 = 62 * 9.81 * (-x) + 1/2 ( 17908.69 x² )

23112.36 + 608.22x - [tex]\frac{17908.69 x^{2} }{2}[/tex] = 0

8954.345 x² - 608.22x - 23112.36 = 0 ----- ( 4 )

Resolving the quadratic equation ( 4 )

x = ± 1.60623 ≈ 1.61 m

Therefore we can conclude that the net would stretch 1.61 m if the person jumped from 38 m

Hence we can conclude that If the person is lying on the net, the net would stretch by : 0.0679 m, and If the person jumped from 38m the net would stretch by : 1.61 m

Learn more about simple spring : https://brainly.com/question/15727787

How can you identify a moveable pulley?
A. It has a fixed axle.
B. It moves up and down with the load.
C. It is anchored.
D. It has been relocated from one location to another.

Answers

B. it moves up and down with the load

2 pts.) An electron is placed in an electric field of intensity 700 N/Cj. What are themagnitude and direction of the acceleration of this electron due to this field? (melectron=9.1 × 10-31 kg, qe= 1.60 × 10-19 C)

Answers

Explanation:

We have,

Electric field intensity is 700 N/Cj

It is required to find the magnitude and direction of the acceleration of this electron due to this field.

The electric force is balanced by the force due to its motion i.e.

qE =ma

a is acceleration of this electron

[tex]a=\dfrac{qE}{m}\\\\a=\dfrac{1.6\times 10^{-19}\times 700}{9.1\times 10^{-31}}\\\\a=1.23\times 10^{14}\ m/s^2[/tex]

So, the acceleration of the electron is [tex]1.23\times 10^{14}\ m/s^2[/tex] and it is moving in +y direction.

A candle is placed 14 cm in front of a concave mirror. The image of the candle is focused on a sheet of paper that is exactly 21 cm in front of the mirror. what is the magnification of the image

Answers

Answer:

The magnification of the image is  [tex]M = -1.5[/tex]

Explanation:

From the question we are told that

      The object distance is  [tex]u = 14 cm[/tex]

      The image distance is  [tex]v = 21 \ cm[/tex]

The magnification of the image is mathematically represented as

        [tex]M = - \frac{v}{u}[/tex]

substituting values

       [tex]M = - \frac{21}{14}[/tex]

        [tex]M = -1.5[/tex]

The negative value means that the image is real , inverted and enlarged

A 200-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.400 rev/s in 2.00 s

Answers

Answer:

F = 187.5N.

Explanation:

So, from the question above we are given the following parameters or data or information which is going to assist us in solving the question/problem;

=> Mass= 200-kg , => radius = 1.50 m, => angular speed of 0.400 rev/s, and time = 2.0 seconds.

Step one: the first step is to calculate or determine the angular speed. Here, the angular speed is Calculated in rad/sec.

Angular speed, w = 0.400 × 2π

= 2.51 rad/s.

Step two: determine the value of a.

Using the formula below;

W = Wo + a × time,t.

2.51 = 0 + a(2.0).

a= 1.25 rad/s^2.

Step three: determine constant force from the Torque.

Torque = I × a.

F = 1/2 × (200 kg) × 1.50 × 1.25.

F = 187.5N

Attempting to impress the skeptical patrol officer with your physics knowledge, you claim that you were traveling so fast that the red light (693 nm) appeared yellow (582 nm) to you. How fast would you have been traveling (in mi/hr) if that had been the case?

Answers

Answer:

v_r = 1.268 × 10⁸ mi/hr

Explanation:

We are given;

wavelength of the red light; λr = 693 nm = 693 × 10^(-9) m

wavelength of the yellow light; λy = 582 nm = 582 × 10^(-9) m

Frequency is given by the formula;

f = v/λ

Where v is speed of light = 3 x 10^(8) m

Frequency of red light; f_o = [3 x 10^(8)]/(693 × 10^(-9)) = 4.33 x 10¹⁴ Hz

Similarly, Frequency of yellow light;

f = [3 x 10⁸]/(582 × 10^(-9)) = 5.15 x 10¹⁴ Hz

To find the speed of the car, we will use the formula;

f = f_o[(c + v_r)/c)]

Where c is speed of light and v_r is speed of car.

Making v_r the subject;

cf/f_o = c + v_r

v_r = c(f/f_o - 1)

So, plugging in the relevant values, we have;

v_r = 3 × 10⁸[((5.15 x 10¹⁴)/(4.33 x 10¹⁴)) - 1]

v_r = 3 × 10⁸(0.189)

v_r = 5.67 x 10⁷ m/s

Converting to mi/hr, 1 m/s = 2.23694 mile/hr

So, v_r = 5.67 × 10⁷ × 2.23694

v_r = 1.268 × 10⁸ mi/hr

g A ceiling fan is rotating counterclockwise with a constant angular acceleration of 0.35π rad/s2 about a fixed axis perpendicular to its plane and through its center. Assume the fan starts from rest. (a) What is the angular velocity of the fan after 2.0 s? (Enter the magnitude.) rad/s (b) What is the angular displacement of the fan after 2.0 s? (Enter the magnitude.) rad

Answers

Answer:

The correct answer will be:

(a) 2.2 rad/s

(b) 2.2 rad

Explanation:

The given values are:

Angular acceleration, [tex]\alpha = 0.35 \pi \ rad/s^2[/tex]

(a)...

At time t = 2.0 s,

The angular velocity will be:

⇒  [tex]\omega = \alpha t[/tex]

On putting the estimated values, we get

⇒     [tex]=0.35\pi \times 2.0[/tex]

∴ [[tex]\pi = 3.14[/tex]]

⇒     [tex]=0.35\times 3.14\times 2.0[/tex]

⇒     [tex]=2.2 \ rad/s[/tex]

(b)...

The angular displacement will be:

⇒  [tex]\theta = \frac{1}{2}\alpha t^2[/tex]

On putting the estimated values, we get

⇒     [tex]=\frac{1}{2}\times 0.35\pi\times (2.0)^2[/tex]

⇒     [tex]=\frac{1}{2}\times 0.35\times 3.14\times 4[/tex]

⇒     [tex]=1.099\times 2[/tex]

⇒     [tex]=2.2 \ rad[/tex]

Your spaceship lands on an unknown planet. To determine the characteristics of this planet, you drop a wrench from 5.00 m above the ground and measure that it hits the ground 0.804 s later. Part APart complete What is the acceleration of gravity near the surface of this planet

Answers

Answer:

g = 15.5 m/s²

Explanation:

In order to find the acceleration due to gravity near the surface of this planet can be calculated by using 2nd equation of motion. The 2nd equation of motion is given as:

h = Vi t + (0.5)gt²

where,

h = height covered by the wrench = 5 m

Vi = Initial Velocity = 0 m/s

t = Time Taken to hit the ground = 0.804 s

g = acceleration due to gravity near the surface of the planet = ?

Therefore,

5 m = (0 m/s)(0.804 s) + (0.5)(g)(0.804 s)²

g = (5 m)/(0.3232 s²)

g = 15.5 m/s²

A flat plate of polished copper of surface emissivity 0.1 is 0.1 m long and 0.1 m wide. The plate is placed vertically, with one side heated to a surface temperature of 500 K, and the other side remaining insulated. The heated side is exposed to quiescent air at 300 K and the surroundings are also at 300 K. Assume that air can be taken as an ideal gas. Estimate the heat rate from the flat plate.

Answers

Answer:

The heat rate is  

Explanation:

From the question we are told that

  The surface emissivity is  [tex]e=0.1[/tex]

   The length is  [tex]L = 0.1 \ m[/tex]

    The width is  [tex]W = 0.1 \ m[/tex]

     The surface temperature of one side is  [tex]T_1 = 500 \ K[/tex]

     The temperature of the quiescent air [tex]T_c = 300 \ K[/tex]

      The temperature of the surrounding is  [tex]T_s = 300 \ K[/tex]

The heat rate from the flat plate is mathematically represented as

         [tex]Q = \sigma A e (T_1^4 - T_a^4)[/tex]

Where [tex]\sigma[/tex] is the quiescent air Stefan-Boltzmann constant  and it value is

       [tex]\sigma = 5.67*10^{-8} m^{-2} \cdot K^{-4}[/tex]

     A is the area which is mathematically evaluated  as

           [tex]A = W * L[/tex]

substituting values

           [tex]A = 0.1 * 0.1[/tex]

           [tex]A = 0.01 \ m^2[/tex]

substituting values

          [tex]Q = 5.67 *10^{-8} * (0.01) *(500^4 -300^4)[/tex]

          [tex]Q =3.045 \ Watt[/tex]

         

       

IS THERE A PLASTIC THAT YOU CAN SEE AND BREATHE THROUGH??? SOMEONE PLEASE ANSWER THIS!!!

Answers

Answer in my own words:

Research reveals that most of the indoor microplastics contained in the air are created by synthetic plastic fibres, as well as by textiles used in furniture

Key words:

1: Research

2: air

3:  Plastic

Please mark brainliest

Hope this helps.

A student is asked to design an experiment to determine the change in angular momentum of a disk that rotates about its center and the product of the average torque applied to the disk and the time interval in which the torque is exerted. A net force is applied tangentially to the surface of the disk. The rotational inertia of the disk about its center is I = 1/2 MR^2
Which two of the following quantities should the student measure to determine the change in angular momentum of the disk after 10 s? Select two answers
A. The magnitude of the net force exerted on the disk
B. The distance between the center of the disk and where the net force is applied to the disk
C. The radius of the disk
D. The mass of the disk

Answers

Answer:

A. The magnitude of the net force exerted on the disk

B. The distance between the center of the disk and where the net force is applied to the disk

Explanation:

To determine the change in angular momentum of the disk after a stipulated time, one must measure the above options.

The radius of the disk is fixed and does not vary with the experiment, and the mass of the disk is also constant and known.

One must first measure the magnitude of the net force exerted on the disk, and determine the torque as a result of this torque from the distance between the center of the disk and the point where the net force is applied.  The above statement also points out the necessity of measuring the distance between the center of the disk and the point where the net force is applied on the disk, as both the torque, and the moment of inertia is calculated from this point.

torque T = Force time distance of point of action of force from mid point of the disk

T = F X r

T x t = Δ(Iω)

Where t is the time,

and Δ(Iω) is change in angular momentum.

v(t) = 12 sin(913t + 71°) volts. Find (a) angular frequency in radians per second, (b) frequency in Hz, (c) period, (d) maximum voltage, (e) minimum voltage, (f) Peak-to-Peak voltage , (g) rms voltage, (h) average voltage, (i) voltage expressed as a phasor, (j) the average power consumed by a 220 ohm resistor having this voltage , and (k) the voltage at t= 3ms

Answers

Answer:

Explanation:

v(t) = 12 sin(913t + 71°) volts

a )  913° = (π / 180) x  913 radians

= 15.92 radians

a ) angular frequency  ω = 15.92 radians / s

b ) ω = 2πn

n = ω / 2π

= 15.92 / 2 x 3.14

= 2.53 Hz

c ) Period = 1 / n

= 1 / 2.53 = .4 s .

d )

Maximum voltage = 12 volt

e) Minimum volts = - 12 volts

g  ) rms volts = V / √2

= 12 / √2

= 8.48 V

h )

Average voltage = 0

j ) Average power

Vrms² / R

= 12 x 12 / 2 x 220

= .327 W.

k )

v(t) = 12 sin(913t + 71°)

v(t) = 12 sin(913x .003 + 71°)

=  12 sin(73.7°)

= 11.5 V .

What are found in nucleus and atoms?

Answers

Answer:

The nucleus of an atom contains the majority of the atom’s mass, and is composed of protons and neutrons, which are collectively referred to as nucleons. The much-lighter electrons orbit their atom’s nucleus. The Protons. Protons are positively charged particles found in an atom’s nucleus.

I hope u liked my answer. please mark me as branliest x

Other Questions
Which of the following sentences use apostrophes correctly? 1. We used to back up our account files weekly and save them onto CDs. 2 .The financial planners e-mail address was listed on his website. 3. Him recording's every conversation made his coworkers suspicious. 4. Making certain that all the timecards were submitted on time was Lorices responsibility. Employees from A and company B receive annual bonuses. What information would you need to test the claim that the difference in annual bonuses is greater than $100 at the 0.5 level of significance? Write out the hypothesis and explain the testing procedure in details 4. (16 points) A company with a fleet of cars found that in a random sample of 65 chosen and tested cars that 30 had emissions systems which failed to meet pollution control guidelines. A statistician is interested in testing if there is enough evidence to conclude that more than 30% of the fleet might be out of compliance regarding pollution control guidelines. Perform a five step hypothesis test using a 0.05 significance level. Write out the hypotheses: Determine critical value(s): Compute the test statistic: Determine the decision: Write the concluding statement: find the perimeter of the triangle defined by the coordinates (9,0) , (-5,0) and (-10,6) If f(x + 2) = 6x2 + 5x 8. Find f(6). Which statement from the passage best supports the claim that citizens have a right to rebel against the government if it does not serve theirneeds?from The Virginia Declaration of RightsJune 12, 1776That all men are by nature poually free and independent, and have certain inherent rights, of which, when they enter into a state of society. The patient recovery time from a particular surgical procedure is normally distributed with a mean of 5.7 days and a standard deviation of 2.4 days. What is the 90th percentile for recovery times? (Round your answer to two decimal places.) Given: PQRS is a rectangle. Put a checkmark in every box that must be true. You will put more than one checkmark. Use calculations and words to show this quadrilateral meets the definition of a kite. Use the drop-down menus to complete the statements about industializationPrior to industrialization most Americans made a living byThe father of the American Industrial Revolution wasThe most important factor in the rapid industrialization of the United States was Its|DoneIntro If lines p and q are parallel then the value of x is Concord Corporation issued 113,000 shares of $19 par value, cumulative, 7% preferred stock on January 1, 2019, for $2,630,000. In December 2021, Concord declared its first dividend of $720,000. (a) Prepare Concords journal entry to record the issuance of the preferred stock. How to solve -5 + 13y = -7 What genre is the story all summer in a day? The diagram shows a floor in the shape of a trapezium. Tim is going to paint the floor. Each 5 litre tin of paint costs 16.99 and 1 litre of paint covers an area of 1.9 m2 How much would it cost to buy all the paint he needs? You must show how you get your answer. 0 m 16m 16.99 James is following this recipe to make flapjacks. James uses 600 g of margarine. How many flapjacks is James making? Recipe: Makes 15 flapjacks 120 g sugar 150 ml syrup 200 g oats 120 g margarine 40 g sultanas Seth tests some objects against each end of a bar magnet. One object he tested is attracted to both ends of the magnet. Which item is MOST LIKELY the object Seth tested?A)batteryB)iron needleC)plastic spoonD)another bar magnet NEED HELP IMMEDIATELY Match the following items. 1. wrote a financial plan for the United StatesAaron Burr2. lost the presidential election to Thomas JeffersonJohn Marshall3. Chief Justice of the Supreme CourtWilliam McKinley4. founder of the Rhode Island colonyAbraham Lincoln5. wrote about racial discriminationRoger Williams6. president during the Civil WarTheodore RooseveltAlexander Hamilton7. the South's choice for president in 1860Confederate general who surrendered at Appomattox Court8.House9. defeated the Union army at the battle of Bull RunWilliam T. ShermanSojourner Truth10. Commander of the Rough RidersAndrew JohnsonStonewall Jackson11. Union general who met at Appomattox Court HouseNorthern general who destroyed everything in his way in the12South13. succeeded Abraham Lincoln as the United States presidentRutherford B. HayesUlysses S. Grant14. won the presidency in 1876John Breckenridge15. United States president during the Spanish-American WarRobert E. Lee Can someone please help me with this please I need the right answer if you dont know how to do geometry then dont do this please thank you Randy suggests that Bob, like all kids, wanted his parents.to set limits and to tell him no because limits give a person something solid to stand on. Is Randy right or wrong? What is "responder" in English? to sit down to remain to restrain to answer