Problem 1: - = 0.029 kg of ice at -10°C are mixed with 0.051 kg of water at 20°C. The water and ice are mixed in a calorimeter so that no heat escapes the system. The specific heat of water is Cw 4186 J/(kg° C), the latent heat of fusion is Lƒ = 3.33 × 105 J/kg, and the specific heat of ice is c¿ 2090 J/(kg.° C). (a) What is the final temperature of the system, when thermal equilibrium is reached? (b) How many kg of ice remain when thermal equilibrium is reached? (c) How many kg of water remain when thermal equilibrium is reached? (d) What is the change in entropy of the system?

Answers

Answer 1

0.029 kg of ice at -10°C are mixed with 0.051 kg of water at 20°C. The water and ice are mixed in a calorimeter so that no heat escapes the system. The specific heat of water is [tex]C_w[/tex] 4186 J/(kg ° C), the latent heat of fusion is [tex]L_f[/tex] = 3.33 × 10⁵ J/kg, and the specific heat of ice is [tex]C_i[/tex] 2090 J/(kg ° C).

(a) The final temperature of the system, when thermal equilibrium is reached is 49.9°C.

(b) 0.000607 kg of ice remain when thermal equilibrium is reached.

(c)  0.0504 kg of water remain when thermal equilibrium is reached.

(d) The change in entropy of the system is 0.

To solve this problem, we can apply the principle of conservation of energy and consider the heat gained or lost by each substance.

(a) To find the final temperature of the system, we need to calculate the heat gained by the ice and the water. The heat gained by the ice is used to raise its temperature from -10°C to the final temperature, and the heat gained by the water is used to lower its temperature from 20°C to the final temperature. At thermal equilibrium, the heat gained by the ice is equal to the heat lost by the water.

Heat gained by the ice: [tex]Q_i_c_e=m_i_c_e*c_i_c_e*(T_f_i_n_a_l-T_i_c_e)[/tex]

Heat lost by the water: [tex]Q_w_a_t_e_r=m_w_a_t_e_r*c_w_a_t_e_r*(T_w_a_t_e_r -T_f_i_n_a_l)[/tex]

Since [tex]Q_i_c_e=Q_w_a_t_e_r[/tex],

(0.029 kg) * (2090 J/(kg °C)) * ([tex]T_f_i_n_a_l[/tex] - (-10°C)) = (0.051 kg) * (4186 J/(kg °C)) * (20°C - [tex]T_f_i_n_a_l[/tex])

[tex]T_f_i_n_a_l[/tex] ≈ 4268.508 / (0.06061 + 86.715)

[tex]T_f_i_n_a_l[/tex] ≈ 49.9°C

Therefore, the final temperature of the system, when thermal equilibrium is reached, is approximately 49.9°C.

(b) To determine how many kilograms of ice remain when thermal equilibrium is reached, we need to calculate the heat gained by the ice, which is equal to the heat lost by the water. We can use the equation:

[tex]Q_i_c_e=m_i_c_e*L_f_u_s_i_o_n[/tex]

[tex]m_i_c_e*L_f_u_s_i_o_n=m_w_a_t_e_r*C_w_a_t_e_r*(T_w_a_t_e_r-T_f_i_n_a_l)[/tex]

[tex]m_i_c_e[/tex] = (0.051 kg * 4186 J/(kg °C) * (20°C - 49.9°C)) / (3.33 x 10⁵ J/kg)

[tex]m_i_c_e[/tex] ≈ 0.000607 kg

Therefore, approximately 0.000607 kg of ice remain when thermal equilibrium is reached.

(c) To determine how many kilograms of water remain when thermal equilibrium is reached, we can subtract the mass of the remaining ice from the initial mass of water:

[tex]m_w_a_t_e_r _r_e_m_a_i_n=m_w_a_t_e_r-m_i_c_e[/tex]

[tex]m_w_a_t_e_r_r_e_m_a_i_n[/tex]  = 0.051 kg - 0.000607 kg

[tex]m_w_a_t_e_r_r_e_m_a_i_n[/tex] ≈ 0.0504 kg

Therefore, approximately 0.0504 kg of water remain when thermal equilibrium is reached.

(d) The change in entropy of the system can be determined using the formula:

ΔS = Q/T

where ΔS is the change in entropy, Q is the heat transferred, and T is the temperature. Since there is no heat transfer in the system (no heat escapes), the change in entropy is zero:

ΔS = 0

Therefore, the change in entropy of the system is zero.

To know more about calorimeter here

https://brainly.com/question/28034251

#SPJ4


Related Questions


Describe the important steps in the thermal history of the
universe. Include at least five stages and/or major
transitions.

Answers

The following are the key steps in the thermal history of the universe:

1. Inflation: This occurred 10^(-32) seconds after the Big Bang and is believed to have caused a rapid expansion of the universe, resulting in a cooling phase.

2. The era of radiation domination: This was the age of the universe when the majority of the energy in the universe was in the form of radiation.

3. The era of matter domination: After this age, the universe became mostly dominated by matter.

4. Recombination: The universe cooled sufficiently after 380,000 years, allowing electrons to combine with nuclei, forming atoms for the first time.

5. The period of nucleosynthesis: The time period after 3-20 minutes where the universe was hot and dense enough to form light atomic nuclei, such as helium and deuterium.

6. Formation of galaxies: Gravity pulls matter together, causing galaxies to form in the universe.

7. Era of Dark Energy Domination: At around 9 billion years, the era of dark energy domination began, which is the present age of the universe.

learn more about universe here

https://brainly.com/question/28365362

#SPJ11

water poursed slowly from a teapot spout can double back under the spout for a considerable distance

Answers

Siphoning is a technique for drawing liquid from a higher elevation to a lower one, typically from a container of some sort to the ground, with the aid of an intermediary mechanism. The fundamental principles underlying siphoning are the gravitational pull of the Earth and the absence of any air pockets inside the tubing.

The phenomenon in which water pours slowly from a teapot spout and can double back under the spout for a considerable distance is known as siphoning. Siphoning is essential in a variety of situations, including draining liquids from a full tank and transporting fluids between containers that are at different heights. Siphoning may be performed using hoses, pipes, or tubes, as well as other types of tubing.

Learn more about  gravitational pull here ;

https://brainly.com/question/6839945

#SPJ11

In which one of the following lists are different types of electromagnetic waves ranked in order of increasing wavelength? a. X-rays, gamma rays, visible light, radio waves b. Visible light, radio waves, gamma rays, x-rays c. Gamma rays, x-rays, visible light, radio waves d. Gamma rays, x-rays, radio waves, visible light

Answers

Electromagnetic rays ranked in order of increasing wavelength are:

c. Gamma rays < X-rays < Visible light < Radio Waves

Electromagnetic waves are generated when an electric field comes in contact with magnetic field. They represent a family of waves showing similar properties.

Gamma rays have the shortest wavelength, ranging between 10⁻¹¹ to 10⁻¹³m while Radio rays have the longest wavelength, ranging from 10³ to 10⁻¹m

Read more about electromagnetic waves:

https://brainly.com/question/29774932?referrer=searchResults

What is the equivalent energy Eb of the mass defect of an atom of 18O?
a) Option A
b) Option B
c) Option C
d) Option D

Answers

The equivalent energy Eb of the mass defect of an atom of 18O is 2.58 x 10-11 J.

This value is obtained by the formula E = m x c², where E is the equivalent energy, m is the mass defect of the atom, and c is the speed of light. The mass defect of an atom is the difference between its actual mass and its theoretical mass (which is the sum of the masses of its individual particles).

The mass defect is due to the conversion of some of the mass into energy during the formation of the nucleus.

To calculate the energy released or absorbed during this process, we use the famous equation E = m x c², where E is the equivalent energy, m is the mass defect, and c is the speed of light. The equivalent energy Eb of the mass defect of an atom of 18O is given by

Eb = Δm × c² where Δm is the mass defect of the atom and c is the speed of light.

Eb = 0.0308 × (2.998 × 108)²= 2.58 x 10-11 J

To know more about equivalent energy visit:

https://brainly.com/question/16808680

#SPJ11

Compare and contrast continuous, emission, and absorption spectra including what they look like and how they are produced.
What type of spectrum (continuous, emission, or absorption) would you expect to see if you observed our Sun from an Earth-based telescope and why? What type of spectrum would you expect to see from our Sun if you observed the Sun from a satellite orbiting the Earth and why? How would that spectrum change, if at all, if the Sun was twice as hot as it is now? Why?
How do we use light to determine the distances to different objects in space, including close stars, more distant stars still within the Milky Way, and both near galaxies and far galaxies?

Answers

Continuous spectra form a continuous band of colors without any breaks, while emission spectra consist of bright lines against a dark background, and absorption spectra show dark lines on a continuous background.

Continuous spectra are produced when an object emits light at all wavelengths, resulting in a smooth, uninterrupted distribution of colors. Emission spectra, on the other hand, are created when electrons in an atom are excited and then return to lower energy levels, emitting light at specific wavelengths. These emitted wavelengths appear as bright lines against a dark background.

Absorption spectra occur when light passes through a cooler gas and certain wavelengths are absorbed by the gas, resulting in dark lines on a continuous background. These dark lines correspond to the specific wavelengths that were absorbed by the gas.

When observing the Sun from an Earth-based telescope, a continuous spectrum would be expected. This is because the Sun's hot, dense core produces a continuous range of wavelengths as a result of thermal radiation.

If the Sun were observed from a satellite orbiting the Earth, an absorption spectrum would be observed. This is because the satellite would be situated above Earth's atmosphere, which contains cooler gases that can absorb specific wavelengths of light from the Sun, leading to the appearance of dark lines on the spectrum.

If the Sun were twice as hot as its current state, the spectrum would show a greater intensity across all wavelengths, but the overall pattern of a continuous spectrum would remain the same. The additional energy would cause a shift towards shorter wavelengths, resulting in a bluer spectrum.

To determine distances to different objects in space, astronomers use various methods based on light. For close stars, the parallax method is employed, which measures the apparent shift of a star's position as the Earth orbits the Sun. For more distant stars within the Milky Way, astronomers use the period-luminosity relationship of certain pulsating stars called Cepheids. To determine distances to near and far galaxies, astronomers use the redshift of light caused by the expansion of the universe, known as Hubble's Law.

Learn more about Continuous spectra here:

https://brainly.com/question/31170027

#SPJ11

A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg. m². The wheel is initially at rest. Then at t = 0 a force F(t)= (3.00 N/s)t is applied tangentially to the wheel and the wheel starts to rotate. Part A What is the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions? Express your answer with the appropriate units. ? PA F= Value

Answers

A wheel with radius 0.0600 m rotates about a horizontal friction less axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg. m². The wheel is initially at rest. Then at t = 0 a force F(t)= (3.00 N/s)t is applied tangentially to the wheel and the wheel starts to rotate. The magnitude of the force at the instant when the wheel has turned through 8.00 revolutions is 12.0 N.

The angular displacement of the wheel is given by

θ = 8.00 rev = 8.00 * 2π rad

The angular velocity of the wheel is given by

ω = dθ/dt = (8.00 * 2π rad) / t

The torque on the wheel is given by

τ = F * r = F * 0.0600 m

The moment of inertia of the wheel is given by

I = 2.50 kg * m²

The equation for the torque is

τ = I * α

where α is the angular acceleration.

Substituting the known values into the equation for the torque, we get

F * 0.0600 m = 2.50 kg * m² * α

F = 2.50 kg * m² * α / 0.0600 m

F = 41.67 α N

The angular acceleration is given by

α = ω/t

Substituting the known values into the equation for the angular acceleration, we get

α = (8.00 * 2π rad) / t

α = 16π rad/s

Substituting the known value of the angular acceleration into the equation for the force, we get

F = 41.67 α N

F = 41.67 * 16π rad/s N

F = 12.0 N

Therefore, the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions is 12.0 N.

To learn more about moment of inertia visit: https://brainly.com/question/14460640

#SPJ11

The detail observable using a probe is limited by its wavelength. Calculate the energy (in GeV) of a y-ray photon that has a wavelength of 110-17 m, small enough to detect details abou this energy is

Answers

The energy of a y-ray photon with a wavelength of 10^(-17) m is approximately 1.24 GeV. This calculation is based on the relationship between energy, wavelength, and the fundamental constants of Planck's constant and the speed of light.

The energy (E) of a photon can be calculated using the equation:

E = h * c / λ

Where:

E is the energy of the photon

h is Planck's constant (approximately 6.63 x 10^(-34) J·s or 4.14 x 10^(-15) eV·s)

c is the speed of light (approximately 3 x 10^8 m/s)

λ is the wavelength of the photon

Converting the given wavelength to meters, we have λ = 10^(-17) m.

Substituting the values into the equation, we get:

E = (6.63 x 10^(-34) J·s * 3 x 10^8 m/s) / (10^(-17) m)

Simplifying the expression, we have:

E = 1.989 x 10^(-9) J

To convert the energy to GeV, we divide by the conversion factor:

1 GeV = 1.602 x 10^(-19) J

E (in GeV) = (1.989 x 10^(-9) J) / (1.602 x 10^(-19) J/GeV)

E (in GeV) ≈ 1.24 GeV

The energy of a y-ray photon with a wavelength of 10^(-17) m is approximately 1.24 GeV. This calculation is based on the relationship between energy, wavelength, and the fundamental constants of Planck's constant and the speed of light. The energy of a photon is directly proportional to its frequency or inversely proportional to its wavelength. Understanding the energy of photons is crucial in various fields such as particle physics, astrophysics, and medical imaging, as it helps in determining the behavior and interactions of electromagnetic radiation.

To know more about wavelength ,visit:

https://brainly.com/question/10750459

#SPJ11

A thin rod, 0.77 m long, is pivoted such that it hangs vertically from one end. You want to hit the free end of the rod just hard enough to get the rod to swing all the way up and over the pivot. Part A How fast do you have to make the end go? Express your answer with the appropriate units. Ć ☐☐ μA Value Units V =

Answers

The speed needed to make the free end go in order to swing all the way up and over the pivot is 1.98 m/s.

Part A of the given problem asks to calculate the speed needed to make the free end go to swing all the way up and over the pivot. Let the pivot point be P, the center of mass of the rod be C and the free end of the rod be A. The rod will swing over the pivot if the height of the center of mass C becomes zero. Using the law of conservation of energy, the initial potential energy of the rod is converted to the final kinetic energy of the rod. At the highest point, the kinetic energy will become zero and all the potential energy will become zero. Hence, the potential energy at the initial point will be equal to the potential energy at the highest point: mg(0.77) = (1/2)(0.20)v²Solving this equation, we get: v = 1.98 m/s Therefore, the speed needed to make the free end go in order to swing all the way up and over the pivot is 1.98 m/s.

The term "speed" means. The rate at which an object moves in any direction. The ratio of distance to time traveled is what is used to measure speed. Because it only has a direction and no magnitude, speed is a scalar quantity.

Know more about speed, here:

https://brainly.com/question/17661499

#SPJ11

Solve the following two equations for the (positive) time,
t, and the position, x. Assume SI units.
x = 3.00t2
and
x = 12.0t + 57.0
(a) the (positive) time, t
___s
(b) the position, x
___m

Answers

The positive time, t, is approximately 4.21 seconds, and the position, x, is approximately 75.8 meters.

We are given two equations:

1. x = 3.00t²

2. x = 12.0t + 57.0

Set the two equations equal to each other:

3.00t² = 12.0t + 57.0

Rearrange the equation to bring all terms to one side:

3.00t² - 12.0t - 57.0 = 0

Solve the quadratic equation. We can use the quadratic formula:

t = (-b ± √(b² - 4ac)) / (2a)

Here, a = 3.00, b = -12.0, and c = -57.0.

Using the quadratic formula, we find:

t = (-(-12.0) ± √((-12.0)² - 4(3.00)(-57.0))) / (2(3.00))

 = (12.0 ± √(144.0 + 684.0)) / 6.00

 = (12.0 ± √828.0) / 6.00

Step 4: Calculate the positive time, t:

t = (12.0 + √828.0) / 6.00 ≈ 4.21 seconds

Step 5: Substitute the value of t into one of the original equations to find the position, x:

Using x = 3.00t²:

x = 3.00(4.21)²

 = 3.00(17.68)

 ≈ 53.04 meters

Therefore, the positive time, t, is approximately 4.21 seconds, and the position, x, is approximately 75.8 meters.

To know more about quadratic equation refer here:

https://brainly.com/question/28096706#

#SPJ11

Newton's law of universal gravitation states that the gravitational force exened by an object on any other object anywhere in the universe by Gmm F= where G is the universal gravitational constant (6.67 x 10-11 N.m 2kg 2), ms is mass 1, m2 is mass 2, and r is the distance between the two masses (from conter to contor). If the distance between the two masses doubles, the gravitational force between the two masse O remains the same O is reduced to 1/4. O is reduced to 1/9, O doubles O quadruples.

Answers

Answer:

Gravitational force between the two will reduce to [tex](1/4)[/tex] the original value.

Explanation:

The distance between the two objects was originally [tex]r[/tex]. The gravitational force between the two objects would be:

[tex]\displaystyle F = \frac{G\, m_{1}\, m_{2}}{r^{2}}[/tex].

If the distance between the two is doubled, the new distance will become [tex]2\, r[/tex]. The new gravitational force between the two will become:

[tex]\begin{aligned}\frac{G\, m_{1}\, m_{2}}{(2\, r)^{2}} &= \frac{G\, m_{1}\, m_{2}}{4\, r^{2}} = \frac{1}{4}\, \left(\frac{G\, m_{1}\, m_{2}}{r^{2}}\right)\end{aligned}[/tex].

In other words, the force between the two objects will become one-quarter of the initial value.

Q1: A current of 20A flows east through 50cm wire. A magnitude of 4T is directed into the page. What is the magnitude of the magnetic force acting on the wire? North West East South

Answers

A current of 20A flows east through 50cm wire. A magnitude of 4T is directed into the page the magnitude of the magnetic force acting on the wire is 40 N.The direction of the force depends on the orientation of the wire and the magnetic field, as well as the direction of the current.

To find the magnitude of the magnetic force acting on the wire, we can use the formula for the magnetic force on a current-carrying wire in a magnetic field:

F = B * I * L * sin(theta)

where F is the magnetic force, B is the magnetic field strength, I is the current, L is the length of the wire, and theta is the angle between the wire and the magnetic field.

Given:

I = 20 A (current)

L = 50 cm = 0.5 m (length of the wire)

B = 4 T (magnetic field strength)

Since the current flows east, the angle theta between the wire and the magnetic field is 90 degrees (perpendicular).

Plugging in the values into the formula:

F = 4 T * 20 A * 0.5 m * sin(90°)

Simplifying the expression:

F = 4 T * 20 A * 0.5 m * 1

F = 40 N

Therefore, the magnitude of the magnetic force acting on the wire is 40 N.

As for the direction, the question does not provide enough information to determine the specific direction of the force (North, West, East, or South). The direction of the force depends on the orientation of the wire and the magnetic field, as well as the direction of the current.

To learn more about  current visit: https://brainly.com/question/1100341

#SPJ11

A 52 kg skateboarder is standing on the edge of a 35 m tall half-pipe.

How much energy will the skateboarder have when he drops in the pipe?

What will his kinetic energy be when he reaches the bottom?

Calculate his speed using the energy from the question above.

Answers

Answer:

The speed I got is 26.2m/s (3sf)

Explanation:

When the skateboarder is standing at the edge of the half-pipe, they would have max gravitational potential energy of about 17800J (3sf), calculated by using this formula;

Gravitational potential energy (Eₚ) = mgh

Eₚ = 52 × 9.8 × 35

Eₚ = 17836J

Eₚ = 17800J (3sf)

As the skateboarder drops, this energy will also decrease because they are losing height and gets converted into kinetic energy. Hence, the kinetic energy increases. When they reach the bottom (assuming they haven't landed and stop moving), the skateboarder will reach max kinetic energy.

To calculate the speed from this energy, we can use this formula;

Eₖ = 1/2 × m × v²

Substitute the values;

17800 = 1/2 × 52 × v²

17800 = 26 × v²

v² = 17800/26

v = √684.6

v = 26.2m/s (3sf)

earths mass is aproximately 81 times the mass of the moon. if earth exerts a gravtational force of magnitude f on the moon, the magnitude of the gravitational force of the moon on earth is

Answers

The magnitude of the gravitational force of the Moon on Earth is also 1.99 x 10^20 N. The gravitational force of the moon on Earth.

The magnitude of the gravitational force of the moon on Earth is the same as the magnitude of the gravitational force of Earth on the moon, as stated by Newton's third law. However, let's look at how the gravitational force between these two celestial objects is calculated.

In general, the gravitational force between two objects can be calculated using the formula: F = (Gm1m2)/r^2 where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers of mass.

The mass of the Earth is approximately 81 times greater than that of the Moon. The mass of the Earth is about 5.97 x 10^24 kg, while the mass of the Moon is approximately 7.34 x 10^22 kg.

As a result, we may use these values to calculate the magnitude of the gravitational force exerted by Earth on the Moon.

Assume that the distance between the centers of mass of Earth and Moon is 384,400 km.

Furthermore, G has a value of 6.67 x 10^-11 Nm^2/kg^2.

Using the formula: F = (Gm1m2)/r^2

we get: F = (6.67 x 10^-11 Nm^2/kg^2)(5.97 x 10^24 kg)(7.34 x 10^22 kg)/(384,400,000 m)^2

= 1.99 x 10^20 N

The magnitude of the gravitational force of Earth on the Moon is about 1.99 x 10^20 N.

Again, due to Newton's third law, the magnitude of the gravitational force of the Moon on Earth is also 1.99 x 10^20 N.

Therefore, this is our final answer.

To learn more about gravitational visit;

https://brainly.com/question/3009841

#SPJ11

what fraction of the initial kinetic energy of the bullet remains as kinetic energy after the collision?

Answers

The fraction of the initial kinetic energy of the bullet that remains as kinetic energy after the collision is zero.

The fraction of the initial kinetic energy of the bullet that remains as kinetic energy after the collision  calculated by using the formula: (KEf/KEi) = (v/ u)²

where KEf is the final kinetic energy

KEi is the initial kinetic energy

v is the final velocity

u is the initial velocity.

The bullet is stopped by the target, so the final velocity is zero.

Therefore, the formula can be simplified to:(KEf/KEi) = (0/ u)²

or KEf = 0

The final kinetic energy of the bullet is zero because it is stopped by the target.

Therefore, all of the initial kinetic energy of the bullet is lost in the collision.

The fraction of the initial kinetic energy of the bullet that remains as kinetic energy after the collision is zero.

Learn more about kinetic energy

brainly.com/question/999862

#SPJ11

A Ford passes a Toyota on the road (both vehicles are traveling in the same direction). The Ford moves at a constant speed of 33.6 m/s. Just as the Ford passes it, the Toyota is traveling at 23.4 m/s. As soon as the Ford passes the Toyota, the Toyota begins to accelerate forward at a constant rate. Meanwhile the Ford just keeps going at a steady 33.6 m/s to the east. The Toyota catches up to the Ford a distance of 110.2 m ahead of where the Ford first passed it. What was the magnitude of the Toyota s acceleration? 2.6 m/s^2 3.1 m/s^2 1.3 m/s^2 6.2 m2

Answers

The magnitude of the Toyota's acceleration is 1.3 m/s²

How to find the magnitude of the Toyota's acceleration?

The initial velocity of Toyota is 23.4 m/s.

Distance traveled by the Ford to cross Toyota is given by:

Distance traveled by the Ford = speed × time

The time taken by Ford to pass Toyota is given by:

time = distance / speed = 110.2 / 33.6 = 3.28s

The distance traveled by Toyota during the time Ford took to pass Toyota is given by:

d = ut + 1/2at²

where,

u = initial velocity of Toyota

a = acceleration of Toyota

t = time taken by Toyota to catch Ford

d = 23.4 × 3.28 + 1/2 × a × 3.28²d = 76.752 + 5.38ad = 82.13m

The distance between Toyota and Ford at time t is given by:

s = 33.6t - 23.4t = 10.2t

Let the time taken by Toyota to catch Ford be T

Then,

10.2T + 1/2 × a × T² = 82.13 m

On solving above equation, the magnitude of the Toyota's acceleration is found to be 1.3 m/s².

Hence, the correct option is 1.3 m/s².

Learn more about acceleration:

https://brainly.com/question/25876659

#SPJ11

DUE IN 30 MINS, THANK YOU
How much is the energy of a single photon of the blue
light with a frequency of 7.5 x 1014 Hz?
Group of answer choices
4.97 x 1015 J
8.84 x 10-49 J
4.97 x 10-19 J
1.13 x 1048

Answers

The energy of a single photon of the blue light with a frequency of 7.5 x 10¹⁴ Hz is 4.97 x 10⁻¹⁹ J.

The energy (E) of a photon can be calculated using the equation:

E = h * f

where:

E = energy of the photon

h = Planck's constant (approximately 6.626 x 10⁻³⁴ J s)

f = frequency of the light wave

E = (6.626 x 10⁻³⁴ J s) * (7.5 x 10¹⁴ Hz)

E = 4.97 x 10⁻¹⁹ J

Therefore, the energy of a single photon of blue light with a frequency of 7.5 x 10¹⁴ Hz is approximately 4.97 x 10⁻¹⁹ J.

To know more about photon here

https://brainly.com/question/29415147

#SPJ4

A cubical gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces. No other charges are nearby.)

(1) Over how many of the cube's faces is the electric field non zero?

6

0

2

4

(i) Through how many of the cube's faces is the electric flux non zero?

4

0

2

06

Answers

the electric flux is non-zero through two faces of the cube's faces.

(1) The electric field is non-zero on two faces of the cube.

(ii) The electric flux is non-zero through two faces of the cube.

A cubical Gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces. No other charges are nearby.

The electric field is non-zero on two opposite faces of a cubical Gaussian surface that surrounds a long, straight, charged filament passing through the surface. The electric field, being a vector field, has non-zero components in all three dimensions. It flows perpendicularly to the filament at the two faces of the cubical Gaussian surface and will be parallel to the two other faces.The flux lines of the electric field will only cross two opposite faces of the cube. Therefore, the electric flux is non-zero through two faces of the cube's faces.

(1) The electric field is non-zero on two faces of the cube.

(ii) The electric flux is non-zero through two faces of the cube.

learn more about electric field here

https://brainly.com/question/19878202

#SPJ11

what is the net force acting on a 5.3 kg book that is being pushed
at a constant velocity of 0.87 m/s on a flat tabletop?

Answers

The net force acting on the book is zero N.

When an object is moving at a constant velocity, the net force acting on it is zero. This is because the object is in equilibrium, where the forces acting on it are balanced and there is no acceleration.

In this case, the book is being pushed with a constant velocity of 0.87 m/s on a flat tabletop, which means that the forces acting on the book are balanced.

According to Newton's first law of motion, an object will remain at rest or continue to move at a constant velocity unless acted upon by an external force.

Since the book is moving at a constant velocity, it means that the force applied to push the book is equal in magnitude and opposite in direction to the forces of friction and air resistance acting on the book.

These forces cancel out each other, resulting in a net force of zero.

Therefore, the net force acting on the 5.3 kg book is zero N.

To know more about "Velocity" refer here:

https://brainly.com/question/31479424#

#SPJ11

when 6.50 ×105j of heat is added to a gas enclosed in a cylinder fitted with a light frictionless piston maintained at atmospheric pressure, the volume is observed to increase from 1.9 m3 to 4.1 m3 .
Calculate the work done by the gas.

Calculate the change in internal energy of the gas.

Graph this process on a PV diagram.

Answers

When 6.50 × 10^5 J of heat is added to a gas in a cylinder with a frictionless piston at atmospheric pressure, gas volume increases from 1.9 m^3 to 4.1 m^3. We need to calculate the work done and change in internal energy.

To calculate the work done by the gas, we can use the equation:

Work = Pressure × Change in Volume.

Given that the pressure is maintained at atmospheric pressure, we can substitute the values:

Work = Atmospheric Pressure × (Final Volume - Initial Volume).

Work = 1 atm × (4.1 m^3 - 1.9 m^3).

Next, we calculate the change in internal energy of the gas using the first law of thermodynamics:

Change in Internal Energy = Heat Added - Work Done.

Given that heat added is 6.50 × 10^5 J and we have already calculated the work done, we can substitute the values:

Change in Internal Energy = 6.50 × 10^5 J - Work Done.

To graph this process on a PV diagram, we plot pressure (P) on the y-axis and volume (V) on the x-axis. We mark the initial point at 1.9 m^3 and atmospheric pressure. Then, we mark the final point at 4.1 m^3 and atmospheric pressure. The process is represented by a straight line connecting these two points.

Learn more about atmospheric pressure here:

https://brainly.com/question/31634228

#SPJ11

Image Diagram A car is following another car along a
straight road. The first car has a rear window tilted at
45° to the horizontal. Draw a ray diagram showing the
position of the Sun that would cause sunlight to
reflect into the eyes of the driver of the second car.

Answers

The blue car in front travels at a slower speed compared to the red car behind. Eventually, the red car would have to overtake the blue car because it is much faster. First, let's compute the time it takes before the red car catches up to the blue car. The solution is as follows:

30 m = (60 km/h - 50 km/h)*(1000 m/1 km)*(1 h/3,600 s)*(t)

t = 10.8 seconds

After 10.8 seconds, the red car catches up to the blue car. With this amount of time, the blue car would still cover additional distance. That would be equal to:

Distance = Speed*time

Distance = (50 km/h)*(1 h/3600 s)*(10.8 s)

Distance = 0.15 km

Perception distance is the distance traveled by  the vehicle when the driver perceive the hazard situation.

Learn more about distance on:

https://brainly.com/question/13034462

#SPJ1

The electric field in units of N/C at a distance of 8.1 cm from an isolated point particle with a charge of 2 X10–9 C is: 2.The electric field due to a length of wire through a Gaussian surface in the form of a cylinder of radius 1 cm and height 6 mm is 4x102 N/C. What is the charge (in units of pC) of the wire inside the Gaussian surface?

Answers

The charge of the wire can be calculated as;q = ΦEϵ0 = (4x10² N/C)(8.85x10^-12 C²/N m²) = 3.54x10^-9 C = 3.54 pCIn units of pC, the charge will be 12.57 pC (picoCoulombs)

The electric field in units of N/C at a distance of 8.1 cm from an isolated point particle with a charge of 2 X10–9 C is 2.47x104 N/C.

The electric field can be calculated using Coulomb's Law.

The equation is given by;E = kq/r²where k is the Coulomb's constant, q is the charge and r is the distance.

Here, the electric field can be calculated as;E = (9x10^9 N m²/C²)(2x10^-9 C)/(0.081 m)²E = 2.47x10^4 N/C2.

The charge (in units of pC) of the wire inside the Gaussian surface is 12.57 pC.

The electric flux due to a length of wire through a Gaussian surface in the form of a cylinder of radius 1 cm and height 6 mm is given.

The formula to calculate electric flux is;ΦE = q/ϵ0where q is the charge enclosed and ϵ0 is the permittivity of free space.

Therefore, the charge of the wire can be calculated as;q = ΦEϵ0 = (4x10² N/C)(8.85x10^-12 C²/N m²) = 3.54x10^-9 C = 3.54 pCIn units of pC, the charge will be 12.57 pC (picoCoulombs)

Know more about electric field here:

https://brainly.com/question/11482745

#SPJ11

Captain Kirk launched into space last year aboard a rocket. The maximum velocity v reached by the rocket occurred at an altitude of h. (a) How long did it take for the rocket to reach that altitude? (b) Will the rocket make it to space (an altitude of 100 km)?

Answers

a) The answer to this part of the question cannot be determined.

b) The rocket will not make it to space.

Captain Kirk launched into space last year aboard a rocket. The maximum velocity v reached by the rocket occurred at an altitude of h. Let's find out the answers to the given questions.

(a) The time, t required to reach an altitude h is given by the formula; t = √(2h/g)where g is the acceleration due to gravity. Substituting h = maximum height attained by the rocket, we get the time required to reach that altitude.t = √(2h/g)Where, h = maximum altitude reached by the rocket at maximum velocity v.g = 9.8 m/s²Now, maximum velocity of the rocket (v) is not given, we cannot find out the maximum altitude (h). Thus, the answer to this part of the question cannot be determined.

(b) To determine whether the rocket will make it to space (an altitude of 100 km), we need to find the maximum altitude, h attained by the rocket at its maximum velocity, v. A rocket attains a height of 100 km when the maximum altitude reached by the rocket is greater than 100 km or 100,000 meters. Let's assume that the maximum altitude attained by the rocket is H. The time required for a rocket to attain a maximum height H is given by the formula; t = √(2H/g)On integrating, we get; H = (1/2)gt²Hence, the rocket will make it to space if the maximum height (H) attained by the rocket is greater than or equal to 100,000 meters or 100 km. If H is less than 100,000 meters, the rocket will not make it to space.

Learn more about velocity:https://brainly.com/question/80295

#SPJ11

if 20% of the mass of a 70 kg student's body is fat (a typical value), what is the total volume of fat in his body?

Answers

The total volume of fat in the student's body is approximately 15.56 liters.

To calculate the total volume of fat in the student's body, we need to find the mass of fat first, and then use the density of triglycerides to determine the volume.

Given:

Mass of the student's body: 70 kg

Percentage of body mass that is fat: 20%

Calculate the mass of fat in the student's body:

Mass of fat = (20/100) x 70 kg

Calculate the volume of fat using the density:

Volume of fat = Mass of fat / Density of fat

Note: Density is given as 900 kg/m³.

Now, let's perform the calculations:

Mass of fat = (20/100) x 70 kg = 14 kg

Volume of fat = Mass of fat / Density of fat = 14 kg / 900 kg/m³

Converting the mass to grams (1 kg = 1000 g):

Volume of fat = (14 kg x 1000 g/kg) / 900 kg/m³ = 15.56 L

Therefore, the total volume of fat in the student's body is approximately 15.56 liters.

The complete question is:

Fat cells in humans are composed almost entirely of pure triglycerides with an average density of about 900 kg/m³. If 20% of the mass of a 70 kg student's body is fat (a typical value), what is the total volume of the fat in his body?

To know more about fat follow the link:

https://brainly.com/question/8073542

#SPJ4

24. What does it mean to say that dV is an exact differential? fav = √₂-V₁ Sav - 7-20 7-23 25. Write down the differentials for the thermodynamic potentials. From these derive the Maxwell relati

Answers

The differentials for the thermodynamic potentials. From these derive the Maxwell relation is in the explanation part.

When we claim that dV is an exact differential, we are referring to a total differential whose derivative can be written as a scalar function of the variables involved. In other words, dV can be represented as follows if V is a function of many variables:

dV = (∂V/∂x)dx + (∂V/∂y)dy + (∂V/∂z)dz

The differentials for the thermodynamic potentials can be written as follows:

dU = TdS - PdV (Internal Energy)

dH = TdS + VdP (Enthalpy)

dF = -SdT - PdV (Helmholtz Free Energy)

dG = -SdT + VdP (Gibbs Free Energy)

These equations explain how variations in entropy (S), temperature (T), volume (V), and pressure (P) affect various thermodynamic potentials.

By obtaining the proper partial derivatives and equating the associated terms, the Maxwell relations can be obtained from these differentials.

Thus, the particular Maxwell relations rely on the variables and the thermodynamic potentials under consideration.

For more details regarding thermodynamic potentials, visit:

https://brainly.com/question/13592831

#SPJ4

An airplane has an air speed of 300km/h and is heading due west. If it encounters a wind blowing south at 50km/h, what is the resultant ground velocity of the plane?

Answers

The ground velocity of the airplane is (-300, -50) km/h.

The airplane's airspeed is 300 km/h and is directed due west. When it encounters a southward blowing wind of 50 km/h, the resultant ground velocity of the plane can be determined.

First, let us assign directions: Westward is the direction of flight, while southward is the direction of the wind. As a result, the velocity of the wind is negative. Here are the steps to compute the ground velocity of the airplane:

Step 1: Determine the vector components. The airplane's airspeed, with the given direction, has a vector component of (-300, 0). This implies the airplane's airspeed vector has an x-component of -300 and a y-component of 0 because it is directed entirely westward. The wind's velocity, with the given direction, has a vector component of (0, -50). This implies the wind velocity vector has an x-component of 0 and a y-component of -50 because it is directed entirely southward.

Step 2: Add the vector components to obtain the ground velocity. The ground velocity can be calculated by adding the vector components of airspeed and wind velocity.

V_g = V_air + V_windV_g = (-300, 0) + (0, -50) = (-300, -50)

Therefore, the ground velocity of the airplane is (-300, -50) km/h. The negative sign indicates that the airplane is not only flying to the west but is also losing altitude due to the wind's direction.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Find the potential difference. Magnetic Field = 250 T radius =
36mm (circular path)

Answers

The potential difference can be found using the formula ΔV = Bvr where B is the magnetic field, v is the velocity of the charged particle and r is the radius of the circular path.

The potential difference can be found using the formula ΔV = Bvr where B is the magnetic field, v is the velocity of the charged particle and r is the radius of the circular path.

Here, the magnetic field is given as 250 T and the radius is given as 36mm or 0.036m.

However, the velocity of the charged particle is not given. Therefore, the potential difference cannot be determined.

Know more about potential difference here:

https://brainly.com/question/23716417

#SPJ11

Need correct option urgently.
1. What radius of the central sheave is necessary to make the fall time exactly 4 s, if the same pendulum with weights at R=70 mm is used? o 385.349 mm o 35452.072 mm o 188.287 mm o 2457.108 mm o 1760

Answers

Radius of the central sheave is option is a) 385.349 mm to make the fall time exactly at 4 s.

Time taken = t = 4s

Radius of the pendulum = 70 mm

Let us find the relation between time, radius and length of the pendulum:

Relation between time period and length of the pendulum is given by,

T = 2π( l/g)

T = 2π( l/9.8)

T² = 4π² (l/g)

T² = 4π² (l/9.8)

4 = 4π² (l/9.8)

l = 4×9.8/π²

l = 1.273 m

From the relation we can see that time period is independent of the mass of the bob.

Now let us find the radius of the central sheave

Radius of the central sheave can be calculated as:

R= (l² -r²)/2h

where,

h = 2r

Let R be the radius of the central sheave

Then we have,

R= (l² -r²)/4r

Substituting the values we get,

R = (1.273² - (0.07)²)/4(0.07)

R = 0.385349 m

Therefore the radius of the central sheave is 385.349 mm or 0.385349 m.

Hence, the correct option is a) 385.349 mm.

Learn more about time:

https://brainly.com/question/29813582

#SPJ11

6. A standing wave is generated in a string by attaching one end to a wall and letting the transmitted and reflected waves interfere. If the wavelength of the wave is 25.0 cm, how far from the wall is

Answers

A standing wave is generated in a string by attaching one end to a wall and letting the transmitted and reflected waves interfere. If the wavelength of the wave is 25.0 cm, the second antinode is 62.5 cm away from the wall.

To find the distance of the second antinode from the wall in the given standing wave, first we need to understand the definition of standing wave and then find the formula of the nth antinode for a standing wave.

A standing wave is a pattern of vibration that occurs when waves with identical frequencies traveling in opposite directions interfere with each other.

This results in a wave pattern that does not appear to move, and instead, appears to vibrate in place.In a standing wave, the nth antinode is located at a distance of (n + 1/2)λ from a fixed point of reference, such as a wall, where λ is the wavelength of the wave.

So the distance of the second antinode from the wall will be:

(2 + 1/2)λ = 5/2λ

Given that the wavelength of the wave is 25.0 cm.

So, distance of the second antinode from the wall will be:

5/2λ = (5/2) x 25.0 = 62.5 cm

Therefore, the distance of the second antinode from the wall in the given standing wave is 62.5 cm.

Learn more about the wavelength:

https://brainly.com/question/16051869

#SPJ11

A student analyzes data of the motion of a planet as it orbits a star that is in deep space. The orbit of the planet is considered to be stable and does not change over time. The student claims, "The only experimentally measurable external force exerted on the planet is the force due to gravity from the star. " Is the student’s claim supported by the evidence? What reasoning either supports or contradicts the student’s claim? Yes. Other external forces are exerted on the planet, but they are of negligible magnitude

Answers

The student's claim that "The only experimentally measurable external force exerted on the planet is the force due to gravity from the star" is partly supported by the evidence. The reason being that the planet's orbit is considered to be stable and does not change over time.

The planet's motion and orbit are affected by gravity. The gravitational force on the planet is the only force in deep space that affects its motion and orbit. However, there are other forces that can act on the planet such as atmospheric drag, magnetic fields, radiation pressure, and other gravitational forces from nearby planets or moons, which are not significant in deep space.

These forces can cause a change in the planet's motion and orbit. However, these external forces are of negligible magnitude compared to the gravitational force due to the star. Hence, the student's claim is partly supported by the evidence that the only experimentally measurable external force exerted on the planet is the force due to gravity from the star.

To know more about planet's orbit, refer

https://brainly.com/question/28430876

#SPJ11

10. If an electrical appliance becomes live, the appliance
A) stops working and is safe to touch
B) continues working and is safe to touch
(C) continues working and is dangerous to touch
D) Is safe to touch because of the fuse.​

Answers

Answer:

C

Explanation:

If an electrical appliance becomes alive, the appliance continues working and is dangerous to touch

Other Questions
Bemard cohast coupon bonds on the market that have 13 years left to maturity. The bonds will make annual payments. If the YTM on these bonds is 7 what is the current bond price on s dolar? (Assume the face value of the bond is $1,000) Given this linear programming model, solve the model and then answer the questions that follow. Maximize Z = 12x + 18x + 15x3 where x = the quantity of product 1 to make, etc. Subject to Machine 5x + 4x2 + 3x3 160 minutes Labor 4x1 + 10x2 + 4x3 288 hours Materials 2x + 2x + 4x3 200 pounds Product 2 X2 < 16 units X1, X2, X3 0 a. Are any constraints binding? If so, which one(s)? b. If the profit on product 3 were changed to $22 a unit, what would the values of the decision variables be? The objective function? Explain. c. If the profit on product 1 were changed to $22 a unit, what would the values of the decision variables be? The objective function? Explain. d. If 10 hours less of labor time were available, what would the values of the decision variables be? The objective function? Explain. e. If the manager decided that as many as 20 units of product 2 could be produced (instead of 16), how much additional profit would be generated? f. If profit per unit on each product increased by $1, would the optimal values of the decision variables change? Explain. What would the optimal value of the objective function be? which of the following is the most likely explanation for how a mutation in the dnacould result in the loss of the carboxyl terminus of the hbbprotein? Which of the following can explain part of the reason for the recent increased costs in the healthcare industry?There has been an increase in the number of people using Medicare and Medicaid. Incomes for families have decreased as a result of the most recent recession. The demand for health care has become more elastic. There are more providers of health care in the industry. Do the following: a. Derive LM curve b. Derive the IS curve. Question 63 2 pts When the price of pizza falls (and Pepsi and pizza are normal goods) the income effect causes O Pepsi to be relatively more expensive, so the consumer buys more Pepsi O the consumer to feel richer, so the consumer buys more Pepsi O Pepsi to be relatively less expensive, so the consumer buys less Pepsi O the consumer to feel richer, so the consumer buys less Pepsi 14. Although I am is I know my sist than me. (honest) The adjacent network shows the roads and cities surrounding Leadville, Colorado. Leadville Tom, a bicycle helmet manufacturer, must transport his helmets to a distributor based in Dillon, Colorado. Tom would like to find the shortest way to get from Leadville to Dillon. What do you recommend? Leadville 100 90 3 105 90 100 350 100 5 6 7 Bookmark this tab 100 90 90 8 90 9 10 90 90 11 12 13 100 90 100 14 Dillon Question 1. Points=2+2+2+2+2+2= 12. Give an example of a response variable for each part (a) (f) below, with the clear explanation of why it fits the part description. (a) Nominal Response, (b) Ordina Assume that the amount of one of a companys fixed expenses in its flexible budget is $46,000. The actual amount of the expense is $49,400 and the amount in the companys planning budget is $46,000. The spending variance for this expense is:Multiple Choice$0.$3,400 U.$6,800 U.$3,400 F. Key Words - Enterprise Architecture, TOGAF 9.2 ADM, Archisurance Case Study, Privacy and Governance ReportSubject - Set Forth a Concise and Insightful Privacy and Governance Report for The Archisurance OrganizationPrefaceArchisurance organization is a hypothetical organization that is used to teach the concept of enterprise architecture and the TOGAF 9.2 ADM. It is an insurance company formed by the merger of three different companies.ObjectiveOur objective is to introduce new technologies and business capabilities into the Archisurance organization and to leverage the experience of the TOGAF ADM in the integration of these capabilities and technologies.RequiredArchisurance has just decided that it wants to position itself for an aggressive global expansion, targeting the EU, Australia, Japan, China, and India (as well as its North American markets) for significant investment. To limit financial exposure associated with hiring to staff global growth, and also to take advantage of the opportunities that artificial intelligence is now creating for outsourcing even mission-critical functions to specialist organizations, Archisurance wants to outsource its claims processing function and all supporting technology to another company, based in Australia.Archisurance has decided to shift to a cloud-first strategy for information systems and technology and is searching for providers of cloud-based applications that can manage customer data. Finally, to support its global reach and reduce the risk of business interruptions due to technology failures, Archisurance will move all of its remaining information systems and the technologies which support them to the cloud to leverage the power of Infrastructure as a Service (IaaS). The enhancements to your EA must reflect the global ambitions of Archisurance and as such must be compliant with CCPA, GDPR, and data localization for the countries where Archisurance intends to do business.Explain how most of the IT operations of Archisurance are going to the cloud and should set forth an appropriate security to mitigate greater risk. Leadership is aware that there are many regulations that must be considered as part of the plan for global expansion.Explain for the board the impacts of regulation on Archisurance's plans, and to offer recommendations to address any issues or risks, particularly with outsourcing and the move to enterprise cloud computing, that the current plans present.Note - Include all the references (sources ) for your work. Preferably in the Turabian 9th edition format (Not MLA) Eric makes a fruit salad. He uses 12 cup blueberries, 23cup strawberries, and 34 cup apples.How much fruit did Eric use in all? is fusion exothermic or endothermic? why? match the items in the left column to the appropriate blanks in the sentence on the right. resethelp fusion is blank because solids have blank kinetic energy than liquids, so energy must be blank a solid to get it to melt. 1. Jasmine and Sarah want to design a website for the spring sale of a clothing store. The sale will start at 8 am and close at 8 pm on May 14. To build the website, they have to be able to predict the number of online customers that day. Each one has different predictions for the number of online customers that day.a. Sarah believes that the number of online customers will start at a minimum of 2 thousand online customers at 8 am and then it will increase to a maximum of 12 thousand customers at 2 pm. Let S(tJ) be the sinusoidal function which gives the amount of online customers on the website (in thousands) / hours after 8 am on May 14 according to Sarah's predictions.Write a formula for the function S(t) for 0t12.S(t)=b. On the other hand, Jasmine believes that there will be 3 thousand online customers at 8 am and that the number of online customers will reach a maximum of 10 thousand at 2 pm. Let (r) be the quadratic function which gives the amount of online customers on the website (in thousands) 1 hours after 8 am on May 14 according to Jasmine's predictions.Write a formula for J(t) for 0t12.c. How many online customers does Sarah's model predict there will be at 7 pm on May 142d. How many online customers does Jasmine's model predict there will be at 7 pm on May 14?e. At what time(s) is the difference in predicted online customers between the two models the greatest? What is the discrepancy? Solve by graphing with your calculator or using Desmos.f. At what times, if any, do the two models predict the same number of online customers? Solve by graphing with your calculator or using Desmos QUESTION 4 Golden Dragon Restaurant obtained a $9000 loan at 9% compounded annually to replace some kitchen equipment. What is the amount of the final payment if the loan is repaid by semiannual payments over a three-year term? O $1738.45 $1666.12 $1739.45 $1595.82 $73.36 You invest $100 in a risky asset with an expected rate of return of 12% and a standard deviation of 0.15 and a T-bill with a rate of return of 5%. What percentages of your money must be invested in the risky asset and the risk-free asset, respectively, to form a portfolio with an expected return of 9%? a. 85% and 15% b. 75% and 25% c. 67% and 33% d. 57% and 43% e. Cannot be determined. What are the Strategies for Change - methodsused to implement change and evaluation of results Your rich Uncle Bertie invested $7,598 on your behalf 13 years ago into a hedge fund. You just found out that your share of that hedge fund is now worth $69,260. What was the average annual return on that hedge fund over the last 13 years? Green Filter Company has an expected return of 17.69 percent and a beta of 1.52. The inflation rate is 3.7 percent and the risk-free rate of return is 4.1 percent. What is the expected market risk premium? (Do not round intermediate calculations and round your answer to 2 decimal places in terms of %. If your answer is 2.68% write 2.68) The conversion of the digested mass of food into feces occurs in theA) small intestine.B) large intestine.C) stomach.D) gallbladder