Oxygen and oxygen-containing compounds are involved in many different reactions. Which of the following equations represent a balanced reaction involving 14 atoms of oxygen? Question 5 options: NH4Cl + KOH --> NH3 + H2O + KCl 2Na + 2H2O --> 2NaOH + H2 2C2H6 + 7O2 --> 4CO2 + 6H2O 4Fe + 3O2 --> 2Fe2O3

Answers

Answer 1

The equation that represents a balanced reaction involving 14 atoms of oxygen is:

2C2H6 + 7O2 --> 4CO2 + 6H2O

a. The relationship between variables in this equation is that 2 moles of C2H6 (ethane) react with 7 moles of O2 (oxygen) to produce 4 moles of CO2 (carbon dioxide) and 6 moles of H2O (water). This equation follows the law of conservation of mass, where the total number of atoms on both sides of the equation is the same, indicating a balanced reaction.

b. The graph is linear, as the coefficients of the reactants and products in the equation are whole numbers and form a consistent ratio. The coefficients of 2, 7, 4, and 6 represent the stoichiometry of the reaction, indicating a fixed relationship between the reactants and products.

c. An example of a situation where this balanced equation could be applicable is the combustion of ethane (C2H6) in the presence of excess oxygen (O2) to produce carbon dioxide (CO2) and water (H2O), which is a common reaction in the combustion of hydrocarbon fuels. The equation represents the balanced stoichiometry of this reaction, where 2 moles of ethane react with 7 moles of oxygen to produce 4 moles of carbon dioxide and 6 moles of water, involving a total of 14 atoms of oxygen in the reaction.

For more questions on: balanced

https://brainly.com/question/31339766

#SPJ11


Related Questions

Complete combustion of a 0.0200 mol sample of a hydrocarbon, CxHy, gives 4.032 L of CO2 at STP and 3.602 g of H2O.
(a) What is the molecular formula of the hydrocarbon? (b) What is the empirical formula of the hydrocarbon?

Answers

The hydrocarbon's molecular structure is [tex]C_9H_20[/tex].The hydrocarbon's empirical formula is [tex]C_9[/tex]/4H5.

To solve this problem, we need to use stoichiometry to relate the amount of [tex]CO__2[/tex] and [tex]H_2O[/tex] produced to the amount of [tex]CxHy[/tex] burned.

(a) To find the molecular formula of the hydrocarbon, we need to first calculate the number of moles of [tex]CO__2[/tex] and [tex]H_2O[/tex] produced. From the ideal gas law, we know that 1 mole of gas at STP (standard temperature and pressure) occupies 22.4 L. Therefore, 4.032 L of [tex]CO__2[/tex] at STP corresponds to:

4.032 L / 22.4 L/mol = 0.180 mol [tex]CO__2[/tex]

Similarly, the mass of H2O produced corresponds to:
3.602 g / 18.02 g/mol = 0.200 mol [tex]H_2O[/tex]

Since the hydrocarbon undergoes complete combustion, it reacts with oxygen to form [tex]CO__2[/tex] and [tex]H_2O[/tex] according to the balanced chemical equation:

[tex]CxHy[/tex] + (x + (y/4))O2 → [tex]CO__2[/tex] + (y/2)[tex]H_2O[/tex]
where x and y are the coefficients of the balanced equation. We can use the stoichiometric ratios to set up two equations:

0.180 mol [tex]CO__2[/tex] = x mol [tex]CxHy[/tex] → x = 0.180 mol / 0.0200 mol = 9
0.200 mol [tex]H_2O[/tex] = (y/2) mol [tex]CxHy[/tex] → y = 0.400 mol / 0.0200 mol = 20

Therefore, the molecular formula of the hydrocarbon is [tex]C_9H_20[/tex].
(b) To find the empirical formula of the hydrocarbon, we need to divide the subscripts by their greatest common factor. In this case, both subscripts are divisible by 4, so we get:

[tex]C_9H_20[/tex] → C9/4H5
Therefore, the empirical formula of the hydrocarbon is C9/4H5.

For more question on molecular

https://brainly.com/question/24191825

#SPJ11

A flexible container at an initial volume of 5.12 L
contains 8.51 mol
of gas. More gas is then added to the container until it reaches a final volume of 13.3 L.
Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.

Answers

Step-by-step Explanation:

8.51 moles is to 5.12 L  as  'x'  moles is to (13.3-5.12) L

8.51 moles / 5.12 L    =   x / ( 13.3-5.12)

x = 13.6 moles

What are four methods of separating mechanical mixture?

Answers

Answer: Mixtures can be physically separated by using methods that use differences in physical properties to separate the components of the mixture, such as

evaporation, distillation, filtration and chromatography.

Explanation:

The critical point for water lies at 275 °C and 3.2 atm, calculate the DH°vap of water.

Answers

The ΔH°vap of water at the critical point is approximately 0.04614 kJ/mol.

To calculate the ΔH°vap (enthalpy of vaporization) of water at the critical point, we can use the Clausius-Clapeyron equation;

ln(P₂/P₁) = ΔH°vap/R [1/T₁ - 1/T₂]

where P₁ and T₁ are the pressure and temperature at which the enthalpy of vaporization is known (usually at standard conditions of 1 atm and 100 °C), P₂ and T₂ are the pressure and temperature at the critical point, ΔH°vap is the enthalpy of vaporization, and R is the gas constant (8.314 J/mol∙K).

Using the given values, we can plug them into the equation and solve for ΔH°vap;

ln(3.2 atm / 1 atm) = ΔH°vap / R [1/373 K - 1/275 K]

Simplifying;

ln(3.2) = ΔH°vap / R [0.0026819]

ΔH°vap / R = ln(3.2) / 0.0026819

ΔH°vap / R = 5.552

Multiplying both sides by R:

ΔH°vap = 5.552 x R

ΔH°vap = 5.552 x 8.314 J/mol∙K

ΔH°vap = 46.14 J/mol

Converting to kJ/mol;

ΔH°vap = 0.04614 kJ/mol

Therefore, the ΔH°vap of water is 0.04614 kJ/mol.

To know more about enthalpy of vaporization here

https://brainly.com/question/7311854

#SPJ1

what is the volume and letters of a solution that contains 0.50 moles of NaOH dissolved in enough distilled water to make 3.0 mm of NaOH solution​
what is the molarity of a solution that contains 60.0 G of caoh dissolved in 150 mm solution​​

Answers

1. To find the volume and units of a solution that contains 0.50 moles of NaOH dissolved in enough distilled water to make 3.0 M NaOH solution:

We first need to use the formula:

moles = concentration (in moles/L) x volume (in L)

Rearranging the formula to solve for volume, we get:

volume = moles / concentration

Substituting the given values, we get:

volume = 0.50 moles / 3.0 M = 0.17 L

Since the volume is given in liters, the units of the solution are L. Therefore, the solution contains 0.50 moles of NaOH dissolved in 0.17 L of distilled water, which makes a 3.0 M NaOH solution.

2. To find the molarity of a solution that contains 60.0 g of Ca(OH)2 dissolved in 150 mL of solution:

We first need to convert the mass of Ca(OH)2 to moles using the molar mass:

molar mass of Ca(OH)2 = 40.08 g/mol + 2 x 16.00 g/mol + 2 x 1.01 g/mol = 74.10 g/mol

moles of Ca(OH)2 = 60.0 g / 74.10 g/mol = 0.810 moles

Next, we need to convert the volume of the solution from milliliters to liters:

volume of solution = 150 mL / 1000 mL/L = 0.150 L

Finally, we can use the formula:

molarity = moles / volume

Substituting the given values, we get:

molarity = 0.810 moles / 0.150 L = 5.4 M

Therefore, the molarity of the solution is 5.4 M.

2. A slice of chocolate cake contains 560 Calories. a. Determine the number of calories found in the slice of cake. b. Determine the number of joules of energy for the slice of cake. c. Determine the number of kilojoules of energy for the slice of cake. 3. Determine the number of calories in 1.5 kilojoules of energy.
SHIW WORK​

Answers

b. To determine the number of joules of energy for the slice of cake, we need to convert the calories to joules using the conversion factor 1 calorie = 4.184 joules:

Number of joules = 560 calories * 4.184 joules/calorie = 2343.04 joules

Therefore, the slice of cake contains 2343.04 joules of energy.

c. To determine the number of kilojoules of energy for the slice of cake, we can divide the number of joules by 1000:

Number of kilojoules = 2343.04 joules / 1000 = 2.34304 kilojoules

Therefore, the slice of cake contains 2.34304 kilojoules of energy.

To determine the number of calories in 1.5 kilojoules of energy, we need to convert kilojoules to calories using the conversion factor 1 kilojoule = 1000 calories:

Number of calories = 1.5 kilojoules * 1000 calories/kilojoule = 1500 calories

Therefore, 1.5 kilojoules of energy contains 1500 calories.

Explanation:

Answer:

2. a. 560 Calories, b. 2343.04 J, c. 2.34304 kJ

3. 358.508604 Cal

Explanation:

2.

a. The number of calories found in the slice of chocolate cake is 56012.

b. To determine the number of joules of energy for the slice of cake, we can use the conversion factor that 1 calorie is equal to 4.184 joules3. Therefore, the number of joules in the slice of cake is:

560 Cal ⋅ 4.184 J/ 1 Cal = 2343.04J

c. To determine the number of kilojoules of energy for the slice of cake, we can use the conversion factor that 1 kilojoule is equal to 1000 joules4. Therefore, the number of kilojoules in the slice of cake is:

2343.04 J ⋅ 1 kJ/1000 J = 2.34304 kJ

3. To determine the number of calories in 1.5 kilojoules of energy, we can use the conversion factor that 1 kilojoule is equal to 239.005736 calories1. Therefore, the number of calories in 1.5 kilojoules of energy is:

1.5 kJ ⋅ 239.005736 Cal / 1 kJ = 358.508604 Cal

Chemistry balance equation
At equilibrium, the value of K = 0.00659 for the reaction: N₂ (g) + 3 H₂ (g) ← → 2 NH₃ (g). Calculate [N₂] when [NH₃] = 0.000123 M and [H₂] = 0.0275 M

Answers

The concentration of the ammonia from the calculation is  [tex]1.1 * 10^-15[/tex]M.

What is the equilibrium constant?

The ratio of the concentrations of products to reactants in chemical equilibrium, for a given chemical reaction at a given temperature, is described by the equilibrium constant, abbreviated as Kc or Keq.

We can see that;

[tex]Keq = [NH_{3} ]^2/[N_{2} ] [ H_{2}]^3\\Keq[N_{2} ] [ H_{2}]^3 = [NH_{3}]^2\\\\N_{2} ] = [NH_{3}]^2/Keq[ H_{2}]^3[/tex]

=[tex](0.000123 )^2/ 0.00659 * (0.0275)^3= 1.1 * 10^-15 M[/tex]

Thus we would have the nitrogen concentration as [tex]1.1 * 10^-15[/tex] M

Learn more about equilibrium constant:https://brainly.com/question/30620209

#SPJ1

N2(g)+3H2(g)->2NH3(g), ΔH=-92.40kJ 1. How many grams of H2 are needed to involve 150.9kJ of heat? 2. How many moles of NH3 were produced in the process?

Answers

1. To solve for the grams of H2 needed, we need to use the given ΔH value to calculate the amount of moles of N2 that reacted. From the balanced chemical equation, we know that for every 3 moles of H2 that reacts, 1 mole of N2 reacts. Therefore, we can use the mole ratio to convert the moles of N2 to moles of H2 and then use the molar mass of H2 to convert to grams.

First, we need to calculate the moles of N2 that reacted to produce 150.9kJ of heat:
ΔH = -92.40 kJ/mol N2
150.9 kJ = (1 mol N2 / -92.40 kJ) x (-150.9 kJ)
mol N2 = 1.63 mol

Using the mole ratio from the balanced chemical equation:

1 mol N2 : 3 mol H2

We can calculate the moles of H2 needed:3 mol H2 = 1 mol N2

3 mol H2 = 1.63 mol N2
mol H2 = 0.543 mol

Finally, we can convert moles of H2 to grams:

mol H2 = 0.543 mol
molar mass of H2 = 2.02 g/mol
grams of H2 = (0.543 mol) x (2.02 g/mol)
grams of H2 = 1.10 g

Therefore, 1.10 grams of H2 are needed to involve 150.9kJ of heat.

2. To solve for the moles of NH3 produced, we can use the same mole ratio from the balanced chemical equation:

1 mol N2 : 2 mol NH3

From the moles of N2 that reacted calculated in part 1, we can calculate the moles of NH3 produced:
1 mol N2 = 2 mol NH3
1 mol N2 = 1.63 mol N2
mol NH3 = (2 mol NH3 / 1 mol N2) x (1.63 mol N2)
mol NH3 = 3.26 mol

Therefore, 3.26 moles of NH3 were produced in the process.

For more questions on: moles

https://brainly.com/question/15356425

#SPJ11

Determine the rate constant for the reaction at 350.0 K
_____M-¹S-¹

Answers

The rate constant (k) for a chemical reaction can be determined experimentally by measuring the reaction rate (v) at different concentrations of reactants and plotting the data using a suitable rate law equation.

How to explain the reaction

There are different methods to determine the rate constant depending on the type of reaction, but a general approach is as follows:

Conduct the reaction under different initial concentrations of reactants while keeping other variables constant such as temperature, pressure, and pH.

Measure the reaction rate at each concentration by monitoring the change in concentration of reactants or products over time.

An overview was given based on incomplete information.

Learn more about reaction on

https://brainly.com/question/11231920

#SPJ1

2ch4 and c2h8 how are they different

Answers

Answer:

Explanation:

Both 2CH4 and C2H8 have the same number and kind of elements. But practically, 2CH4 will be existing but C2H8 cannot exist.

Three of the primary components of air are
carbon dioxide, nitrogen, and oxygen. In a
sample containing a mixture of only these
gases at exactly one-atmosphere pressure, the partial pressures of carbon dioxide and nitrogen are given as PCO2 = 0.285 torr and
PN2 = 580.502 torr. What is the partial pressure of oxygen?
Answer in units of torr.

Answers

The partial pressure of the oxygen is 0.236 atm.

What is partial pressure?

The pressure that one gas component in a mixture of gases exerts is known as partial pressure. It is the pressure that the gas would experience if it took up the same amount of space in the mixture at the same temperature on its own.

We know that;

P[tex]CO_{2}[/tex] = 0.285 torr or 0.000375 atm

P[tex]N_{2}[/tex] = 580.502 torr or 0.764 atm

P[tex]O_{2}[/tex] = ?

Total pressure = 1 atm

Then we have that;

PT =P[tex]CO_{2}[/tex]  +P[tex]N_{2}[/tex]+ P[tex]O_{2}[/tex]

P[tex]O_{2}[/tex] = PT - (P[tex]CO_{2}[/tex]  + P[tex]N_{2}[/tex])

P[tex]O_{2}[/tex] = 1 - (0.000375  + 0.764)

P[tex]O_{2}[/tex]= 0.236 atm

Learn more about partial pressure:https://brainly.com/question/31214700

#SPJ1

Which statements are TRUE about fossil fuels? (Select all that apply.)

They are in a limited supply.

They do not replenish themselves.

They are expensive to extract compared to other forms of energy.

They release large amounts of carbon dioxide when burned
✎help its an exam✎ ☕︎if any links I WILL REPORT☕︎

Answers

Answer:

All is Correct

Explanation:

Fossil fuels have the following properties:

They are in a limited supply. Fossil fuels are non-renewable resources, meaning that they cannot be replenished at the same rate as they are consumed. Once they are used up, they are gone forever.They do not replenish themselves. Fossil fuels take millions of years to form under specific geological conditions. They cannot be regenerated by natural processes in a human timescale.They are expensive to extract compared to other forms of energy. Fossil fuels require complex and costly methods to locate, drill, mine, transport, and refine. They also have negative externalities, such as environmental damage, health risks, and social conflicts, that are not reflected in their market prices.They release large amounts of carbon dioxide when burned. Fossil fuels contain carbon that was stored underground for millions of years. When they are burned, they release carbon dioxide (CO2) into the atmosphere, which is a greenhouse gas that contributes to global warming and climate change.

Therefore, the answer is to select all

Answer:

It's A, B, and D

Explanation:

Maybe not D, because that is burning wood like charcoal. Not sure about that. Hope this helps!

The mass of calcium release same number of valence electron as same number of 23g Na

Answers

20 g of calcium would release the same number of valence electrons as 23 g of sodium.

The atomic number of calcium (Ca) is 20, which means it has 20 electrons in its neutral state. When calcium loses two electrons, it becomes a Ca2+ ion with 18 electrons.

On the other hand, the atomic number of sodium (Na) is 11, which means it has 11 electrons in its neutral state. When sodium loses one electron, it becomes a Na+ ion with 10 electrons.

To release the same number of valence electrons as 23 g of Na, we need to calculate how many moles of Na there are in 23 g:

Molar mass of Na = 23 g/mol

Number of moles of Na = 23 g / 23 g/mol = 1 mol

Since each Na+ ion has lost one electron, 1 mol of Na+ ions has lost 1 mol of valence electrons.

To release the same number of valence electrons as 1 mol of Na+ ions, we need to calculate how many moles of Ca2+ ions are required:

1 mol of Na+ ions = 1 mol of valence electrons

1 mol of Ca2+ ions = 2 mol of valence electrons

Therefore, we need 0.5 mol of Ca2+ ions to release the same number of valence electrons as 1 mol of Na+ ions.

Finally, we can calculate the mass of calcium that would release the same number of valence electrons as 23 g of Na:

Molar mass of Ca = 40 g/mol

Mass of Ca required = 0.5 mol x 40 g/mol = 20 g

Therefore, 20 g of calcium would release the same number of valence electrons as 23 g of sodium.

learn more about valence electrons here

https://brainly.com/question/371590

#SPJ1

d. Given this law, 4 of 4.
Select Choice
of hydrogen (H2) is produced in the following reaction.

Zn + 2HCl → ZnCl2 + H2
65 g 72 g 135 g ?

Answers

Mass of reactants = mass of products
65 + 72 = 135 + m
m = 2 g

The mass of hydrogen produced in the reaction is 2g.

What is Mole?

The mole is an amount unit similar to familiar units like pair, dozen, gross, etc. It provides a specific measure of the number of atoms or molecules in a bulk sample of matter.

A mole is defined as the amount of substance containing the same number of atoms, molecules, ions, etc. as the number of atoms in a sample of pure 12C weighing exactly 12 g.

Given,

Mass of Zn = 65g

Mass of HCl = 72g

Moles of Zn = mass / molar mass

= 65 / 65 = 1 mole

Moles of HCl = 72 / 36.5

= 1.97 moles

Since moles of Zn is lesser, therefore it is the limiting reagent.

From the reaction, 1 mole of Zn gives 1 mole of hydrogen

Moles of hydrogen = 1 mole

mass of hydrogen = moles × molar mass

= 1 × 2 = 2g

Therefore, the mass of hydrogen produced in the reaction is 2g.

Learn more about Moles, here:

https://brainly.com/question/31597231

#SPJ2

8. The compound C2H4 has van der Waals constants a = 4.612 atm•L2/mol2 and b = 0.0582 L/mol. Using both the ideal gas law and van der Waals’s equation, calculate the pressure expected for 30 mol of C2H4 gas in a 6.00-L container at 20 °C.

Answers

Using the Ideal Gas Law, the pressure expected for 30 mol of  [tex]C_2H_4[/tex] gas in a 6.00-L container at 20 °C is 1210.07 atm, and using the van der Waals equation, the pressure is 1179.71 atm.

To calculate the pressure expected for 30 mol of [tex]C_2H_4[/tex] gas in a 6.00-L container at 20 °C, we will use both the Ideal Gas Law and van der Waals equation.

Ideal Gas Law: PV = nRT
P = pressure
V = volume (6.00 L)
n = moles (30 mol)
R = ideal gas constant (0.0821 L•atm/mol•K)
T = temperature (20 °C + 273.15 = 293.15 K)

Solve for P (pressure):

P = nRT / V

P = (30 mol)(0.0821 L•atm/mol•K)(293.15 K) / 6.00 L

P = 1210.07 atm

Van der Waals equation:

(P + a(n/V)²)(V - nb) = nRT
a = 4.612 atm•L²/mol²
b = 0.0582 L/mol

Solve for P (pressure):
(P + (4.612)(30/6)²) (6 - 0.0582 * 30) = (30)(0.0821)(293.15)

P = 1179.71 atm

Using the Ideal Gas Law, the pressure is 1210.07 atm, and using the van der Waals equation, the pressure is 1179.71 atm.

For more question on van der Waals equation.

https://brainly.com/question/7302004

#SPJ11

If the amount of solute present in a solution at a given temperature is less than the maximum amount that can be dissolved at that tempature the solution is said to be

Answers

Answer:

Unsaturated

Explanation:

A solution is unsaturated when it contains less than the maximum amount of solute that is capable of being dissolved.

What is the net ionic charge of an oxygen ion ?

Answers

Answer: -2

The oxygen ion is generally represented as O−2 . Therefore, the charge that results when oxygen becomes an ion is −2

A 192 gram piece of copper was heated to 100.°C in a boiling water bath, then it was dropped into a beaker containing 850. mL of water at 4.00°C. What is the final temperature of the copper and water after they come to thermal equilibrium?

Note: The specific heat of copper is 0.385 J/g °C.

Do not round your answer in the middle of the problem. Round at the very end.
Round your answer to the correct number of sig figs. Your units should be degrees Celsius.

Answers

The final temperature of the copper and water after they come to thermal equilibrium is 109.8°C.

What is temperature?

Temperature is a measure of the amount of thermal energy present in a substance or object. It is measured in degrees on a scale such as Fahrenheit, Celsius, or Kelvin. Temperature is important in determining the physical and chemical properties of a substance, such as its melting point, boiling point, and specific gravity. Temperature also affects the rate of a chemical reaction and the speed of diffusion.

The change in temperature of the copper can be calculated using the equation
ΔT = (Q/mc), where Q is the heat transferred, m is the mass of the copper, and c is the specific heat of copper.
Q = mcΔT = (192 g)(0.385 J/g °C)(100°C) = 74080 J
The heat transferred from the copper must equal the heat transferred to the water. Therefore,
(74080 J) = (0.85 L)(4.184 J/g°C)(ΔT)
ΔT = (74080 J)/[(0.85 L)(4.184 J/g°C)] = 109.8°C
The final temperature of the copper and water after they come to thermal equilibrium is 109.8°C.

To learn more about temperature
https://brainly.com/question/4735135
#SPJ1

Is the following reaction endothermic or exothermic?

C3H8 + 5 O2 --> 3 CO2 + 4 H2O

H= -2200 kJ

Answers

Since the ΔH for the given reaction has negative value, the reaction is exothermic reaction.

A reaction that is exothermic is one in which power is given off as heat or light. In contrast to an endothermic process, which draws energy from its surroundings, an exothermic reaction transfers energy into the environment. The alteration in enthalpy (H) during an exothermic reaction will be negative. Since the ΔH for the given reaction has negative value, the reaction is exothermic reaction.

To know more about exothermic reaction, here:

https://brainly.com/question/10373907

#SPJ1

please help asap!

3. A double replacement reaction occurs between two solutions of lead (II) nitrate and potassium bromide. Write a
balanced equation for this reaction-identifying the product that will precipitate, and the product that will remain in
solution.
a) Write the balanced equation for this double replacement reaction.
b) If this reaction starts with 32.5 g lead (II) nitrate and 38.75 g potassium bromide, how many grams of the
precipitate will be produced? Remember to use the limiting reactant to calculate the amount of precipitate
formed.
c) How many grams of the excess reactant will remain?

Answers

Answer:

Explanation:

a) The balanced equation for the double replacement reaction between lead (II) nitrate and potassium bromide is:

Pb(NO₃)₂(aq) + 2KBr(aq) → PbBr₂(s) + 2KNO₃(aq)

In this reaction, lead (II) bromide (PbBr₂) will precipitate, while potassium nitrate (KNO₃) will remain in solution.

b) To determine the amount of precipitate produced, we need to first determine the limiting reactant. We can do this by calculating the number of moles of each reactant and comparing it to the stoichiometry of the balanced equation.

The molar mass of lead (II) nitrate is 331.21 g/mol and the molar mass of potassium bromide is 119.00 g/mol.

The number of moles of lead (II) nitrate is 32.5 g / 331.21 g/mol = 0.0981 mol The number of moles of potassium bromide is 38.75 g / 119.00 g/mol = 0.3256 mol

According to the balanced equation, one mole of lead (II) nitrate reacts with two moles of potassium bromide to produce one mole of lead (II) bromide. This means that if all the lead (II) nitrate were to react, it would require 0.0981 mol * 2 = 0.1962 mol of potassium bromide.

Since we have more than enough potassium bromide (0.3256 mol > 0.1962 mol), lead (II) nitrate is the limiting reactant.

The number of moles of lead (II) bromide produced will be equal to the number of moles of lead (II) nitrate consumed, which is 0.0981 mol.

The molar mass of lead (II) bromide is 367.01 g/mol, so the mass of lead (II) bromide produced will be 0.0981 mol * 367.01 g/mol = 36.0 g.

c) To determine the amount of excess reactant remaining, we need to subtract the amount consumed from the initial amount.

The number of moles of potassium bromide consumed is half the number of moles of lead (II) nitrate consumed, which is 0.0981 mol / 2 = 0.04905 mol.

The mass of potassium bromide consumed is 0.04905 mol * 119.00 g/mol = 5.84 g.

The mass of potassium bromide remaining is 38.75 g - 5.84 g = 32.91 g.

A solution of thickness 3cm transmits 30%. calculate the concentration of the solution. E= 400dm/mol/cm​

Answers

The concentration of the solution is  0.000435 mol/dm³.

What is the concentration of the solution?

The concentration of a solution is calculated as follows;

Concentration = (Absorbance) / (Molar absorptivity x path length)

the path length =  3cm

the molar absorptivity (E) = 400 dm/mol/cm.

if the solution transmits 30% of the light, it absorbs 70% of the incident light.

Absorbance = log (1/Transmittance)

Absorbance  = log (1/0.3)

Absorbance  = 0.523

Concentration = (0.523) / (400 dm/mol/cm x 3 cm)

= 0.000435 mol/dm³

Learn more about concentration here: https://brainly.com/question/26255204

#SPJ1

How many grams of zinc chloride would be formed if 77.1 grams of zinc reacts?

Zn + HCl -->ZnCl2 + H2

Answers

The amount of zinc chloride that would be formed if 77.1 grams of zinc reacts is approximately 160.77 grams

To determine how many grams of zinc chloride ([tex]ZnCl_2[/tex]) would be formed if 77.1 grams of zinc (Zn) reacts, we'll use stoichiometry.

First, we need the molar masses of the substances involved:

Zn: 65.38 g/mol
[tex]ZnCl_2[/tex] : 136.29 g/mol
Now, we'll convert grams of Zn to moles:
77.1 g Zn × (1 mol Zn / 65.38 g Zn) = 1.179 moles Zn
According to the balanced chemical equation, 1 mole of Zn reacts to form 1 mole of [tex]ZnCl_2[/tex]:
1.179 moles Zn × (1 mol ZnCl₂ / 1 mol Zn) = 1.179 moles ZnCl₂

Finally, convert moles of ZnCl₂ to grams:
1.179 moles ZnCl₂ × (136.29 g ZnCl₂ / 1 mol ZnCl₂) ≈ 160.77 g ZnCl₂
So, approximately 160.77 grams of zinc chloride would be formed if 77.1 grams of zinc reacts.

For more question on molar masses

https://brainly.com/question/21334167

#SPJ11

Identity the number of bonding pairs and lone pairs of electrons n2

Answers

There are 3 bonding pairs and 7 lone pairs of electrons in N2.

What is an electron

An atom's nucleus is orbited by an electron, a subatomic particle with a negative charge. Along with protons and neutrons, it is one of the elementary particles that make up matter. The mass of an electron is exceedingly small, it is roughly 1/1836 that of a proton.

To determine the number of lone pairs of electrons in N2, we need to subtract the number of bonding pairs from the total number of valence electrons:

Number of lone pairs = Total number of valence electrons - Number of bonding pairs

Number of lone pairs = 10 - 3

Number of lone pairs = 7

Therefore, there are 3 bonding pairs and 7 lone pairs of electrons in N2.

Learn more  on covalent bonds here https://brainly.com/question/3447218

#SPJ1

Need help matching pairs of structures to diastereomers, enantiomers, constitutional isomers, not isomers, diff representations of the same?

Answers

A pair of molecules which exist in two forms that are mirror images of each other but cannot be superimposed one upon the other are called the enantiomers. They are present in pairs and have similar molecular shape.

The compounds with the same molecular formula but are non-superimposable non-mirror images are called diastereomers. They have distinct physical properties and molecular shape.

The constitutional isomers have the same molecular formula but have different bonding atomic organization and bonding patterns.

So here:

1st structure is constitutional isomers (c), 2nd structures are enantiomers (b) and the 3rd are completely different not isomers (d).

To know more about enantiomers, visit;

https://brainly.com/question/30401546

#SPJ1

Anyone know how to solve this?

Answers

The ratio of the concentrations at equilibrium is as follows:

3.7 0.85 0.04 21.3 42.6 12212.92 0.81 0.11 7.4 14.8 6012.2 0.63 0.43 1.5 3 274

What are reactions in equilibrium?

Chemical equilibrium is the point in a chemical reaction where both the forward and backward processes are occurring at the same rate.

The concentrations of the reactants and products are constant at equilibrium because the forward and reverse speeds are equal.

Considering the given statements based on the reaction equilibrium concentrations, the correct options are:

TrueFalseTrueFalseTrue

Learn more about reactions in equilibrium at: https://brainly.com/question/18849238

#SPJ1

What mass (grams) of oxygen will be released when 268.9 grams of Potassium Chlorate is thermally decomposed?

KClO3 --> KCl + O2

Answers

The centripetal acceleration experienced by the object can be calculated using the formula a = v^2/r, where v is the speed of the object and r is the radius of the circle. Substituting the given values, we get:

a = (50 cm/s)^2 / (250 cm)
a = 10 cm/s^2

Therefore, the centripetal acceleration experienced by the object is 10 cm/s^2.
To calculate the centripetal acceleration experienced by the object, you can use the formula:
Centripetal acceleration (a_c) = (velocity^2) / radius
Here, the velocity (v) is 50 cm/s and the radius (r) is 250 cm. Plugging in these values, we get:
a_c = (50^2) / 250 = 2500 / 250 = 10 cm/s²
So, the centripetal acceleration experienced by the object is 10 cm/s².

For more question on centripetal acceleration

https://brainly.com/question/22103069

#SPJ11

How many grams of magnesium oxide would be formed if 28.2 grams of magnesium was burned?

Mg + O2 --> MgO

Answers

When 28.2 grams of Mg is burned, 46.7 grams of MgO will be formed.

How to determine the amount of MgO formed when 28.2 grams of Mg is burned

The balanced chemical equation for the combustion of magnesium is:

2 Mg + O2 --> 2 MgO

This equation shows that 2 moles of Mg react with 1 mole of O2 to produce 2 moles of MgO.

To determine the amount of MgO formed when 28.2 grams of Mg is burned, we first need to convert the given mass of Mg to moles:

molar mass of Mg = 24.31 g/mol

moles of Mg = mass of Mg / molar mass of Mg

moles of Mg = 28.2 g / 24.31 g/mol

moles of Mg = 1.16 mol

According to the balanced chemical equation, 2 moles of Mg produce 2 moles of MgO. Therefore, we can use the mole ratio to calculate the moles of MgO formed:

moles of MgO = moles of Mg x (2 moles of MgO / 2 moles of Mg)

moles of MgO = 1.16 mol x 1

moles of MgO = 1.16 mol

Finally, we can convert the moles of MgO to grams using its molar mass:

molar mass of MgO = 40.31 g/mol

mass of MgO = moles of MgO x molar mass of MgO

mass of MgO = 1.16 mol x 40.31 g/mol

mass of MgO = 46.7 g

Therefore, when 28.2 grams of Mg is burned, 46.7 grams of MgO will be formed.

Learn more about moles here : brainly.com/question/14357742

#SPJ1

Lead(II) nitrate and ammonium iodide react to form lead(II) iodide and ammonium nitrate according to the reaction

Pb(NO3)2(aq)+2NH4I(aq)⟶PbI2(s)+2NH4NO3(aq)

What volume of a 0.350 M NH4I solution is required to react with 415 mL of a 0.120 M Pb(NO3)2 solution?
How many moles of PbI2 are formed from this reaction?

Answers

1. The volume of 0.350 M NH₄I solution is required is 286 mL

2. The mole of PbI₂ formed is 0.0498

1. How do i determine the volume of NH4I required?

First, we shall determine the mole in 415 mL of 0.120 M Pb(NO₃)₂. Details below:

Molarity of Pb(NO₃)₂ = 0.120 M MVolume of Pb(NO₃)₂ = 415 mL = 415 / 1000 = 0.415 LMole of Pb(NO₃)₂ =?

Mole = molarity × volume

Mole of Pb(NO₃)₂ = 0.120 × 0.415

Mole of Pb(NO₃)₂ = 0.0498 mole

Next, we shall determine the mole of NH₄I that reacted. Details below:

Pb(NO₃)₂(aq) + 2NH₄I(aq) ⟶ PbI₂(s) + 2NH₄NO₃(aq)

From the balanced equation above,

1 moles of Pb(NO₃)₂ reacted with 2 moles of NH₄I

Therefore,

0.0498 mole of Pb(NO₃)₂ will react with = 0.0498 × 2 = 0.1 mole of NH₄I

Finally, we shall determine the volume of NH₄I required for the reaction. Details below:

Molarity of NH₄I = 0.350 MMole of NH₄I = 0.1 moleVolume of NH₄I =?

Volume = mole / molarity

Volume of NH₄I = 0.1 / 0.350

Volume of NH₄I = 0.286 L

Multiply by 1000 to express in mL

Volume of NH₄I = 0.286  × 1000

Volume of NH₄I = 286 mL

2. How do i determine the mole of PbI₂ formed?

The mole of PbI₂ formed can be obtain as follow:

Pb(NO₃)₂(aq) + 2NH₄I(aq) ⟶ PbI₂(s) + 2NH₄NO₃(aq)

From the balanced equation above,

1 mole of Pb(NO₃)₂ reacted to produced 1 mole of PbI₂

Therefore,

0.0498 mole of Pb(NO₃)₂ will also react to produce 0.0498 mole of PbI₂

Thus, the number of mole of PbI₂ formed is 0.0498 mole

Learn more about mole produced:

https://brainly.com/question/13375719

#SPJ1

100 POINTS PLEASE HELP!!! 1. Explain how you would determine the enthalpy of reaction for the hypothetical reaction A2X4(l) + X2(g) → 2AX3(g) using the following information. You do not need to calculate an answer. Respond to the prompt with a minimum response length of 50 words.

Answers

To determine the enthalpy of reaction for the given reaction, use Hess's Law, which states that the total enthalpy change of a reaction is independent of the pathway between the initial and final states.

How to determine the enthalpy of reaction?

Break the given reaction into a series of steps for which the enthalpy changes are known or can be measured experimentally.

Add the enthalpy changes of each step to determine the overall enthalpy change for the reaction.

For example, determine the enthalpy of formation for A₂X₄(l), X₂(g), and AX₃(g) and use them to calculate the enthalpy of reaction for the given equation.

Find out more on enthalpy here: https://brainly.com/question/16985375

#SPJ1

A sample of an ideal gas has a volume of 2.31 L
at 279 K
and 1.01 atm.
Calculate the pressure when the volume is 1.09 L
and the temperature is 308 K.

Answers

The pressure of the gas when the volume is 1.09 L and the temperature is 308 K is 2.36 atm.

What is the final pressure of the gas?

The final pressure of the gas is calculated by applying ideal gas law as follows;

(P₁V₁)/T₁ = (P₂V₂)/T₂

where

P₁, V₁, and T₁ are the initial pressure, volume, and temperature, P₂, V₂, and T₂ are the final pressure, volume, and temperature,

P₂ = (P₁V₁ x T₂)/(V₂ x T₁)

P₂ = (1.01 atm x 2.31 L x 308 K) / (1.09 L x 279 K)

P₂ = 2.36 atm

Learn more about final pressure of gas here: https://brainly.com/question/25736513

#SPJ1

Other Questions
The standard output fixed by the company is 520 units per week. Normal piece rate is 3 RO. Mr. Samuel makes 500 units per week. Calculate the total earning of the Mr. Samuel as per Merrick incentive plan.a. 1990b. 1650C. 1960d. 1056 What is the inertia of motion? Question 8 of 10Which statement best illustrates an example of economic specialization?A. An artist becomes an expert at designing websites forrestaurants.B. An employee leaves a large corporation to start her own business.C. A country decides to stop importing goods from foreigncompanies.D. A business owner only hires employees with a wide variety ofskills. NEED ASAPIn the context of the text, why do people do bad things? (from the point of view of the Aztec a) Calculate the scale factor from shape A to shape B.b) Find the value of t.Give each answer as an integer or as a fraction in its simplest form.A5 cm15 cm7cmB12 cm4cm t cm !!!PLEASE HELPP!!! Lee y elige. Read about Luis, then select the the word that completes each statement correctly.Luis quiere tener un cuerpo saludable. l hace ejercicio para estar en forma. Cuando hace ejercicio, Luis usa las piernas, los brazos, las manos y el cuello. A Luis le gusta practicar deportes, beber mucha agua y comer alimentos saludables. l tiene hbitos saludables y nunca tiene que tomar medicamentos porque nunca se enferma. Luis tiene buenos hbitos de higiene. Se ducha todos los das, se cepilla los dientes despus de comer y se lava las manos con agua y jabn. Siempre usa desodorante y champ. l descansa ocho horas todos los das y tiene muchas actividades de ocio.Si quieres estar sano como Luis, tienes que dormir bien, levantarte temprano, tener buenos hbitos de higiene y hacer ejercicio. Recuerda, si no quieres tener dolor de cabeza o ir al hospital, come bien y practica deportes.1: Cuando Luis hace ejercicio usa ______ Answers: los dientes -- los brazos -- el pelo2: Luis no tiene que tomar medicamentos porque ____ Answers: tiene hbitos saludables -- se levanta temprano -- tiene muchas actividades de ocio3: Para estar sano necesitas comer bien y ____ Answers: lavarte la cara -- usar desodorante -- practicar deportes4: Un buen hbito de higiene es _____ Answers: visitar al doctor -- comer frutas -- lavarse las manos5: Luis siempre usa desodorante y ____ Answers: crema de afeitar -- champ -- gel 4. In Paragraph 4, what supporting information does the writer give to show that uniforms make students equal? Bill is walking up the steps in the Washington Monument at a rate of 30 feet per minute and Joe is walking down at the rate of 45 feet per minute. Bill is 75 feet from the bottom at the same moment that Joe is 325 feet from the bottom. Which of the following systems of equations can be used to determine the number of minutes t, from now and height, (in feet), at which they will pass each other? A cube is sliced perpendicular to its base what is the shape of the resulting two dimensional cross-section 1. trapezoid 2. square 3.circle An art class cost $45 for material and $10 per class. A. What is the rate if change?B. What is the initial value?C. What is the independent variable?D. What is the dependent variable? In KLM, m = 17 inches, l = 44 inches and L=153. Find all possible values of M, to the nearest 10th of a degree When you pedal really fast on a bike, you can feel the wind slowing you down.Which force causes this?OA. Strong nuclear forceB. Magnetic forceOOD. GravityC. Air resistance Which of the following are necessary when proving that the opposite anglesof a parallelogram are congruent? Check all that apply.A. Corresponding parts of similar triangles are similar.B. Corresponding parts of congruent triangles are congruent.C. Opposite sides are perpendicular.D. Opposite sides are congruent.SUBMIT What are the solutions to the problems facing pastoralists and farmers in South Sudan Which statement from the US Constitution is referred to as the elastic clause?All legislative powers herein granted shall be vested in Congress of the United StatesCongress shall make no law respecting an establishment of religionAll bills for raising revenue shall originate in the House of RepresentativesCongress shall have powerto make all laws which shall be necessary and proper for carrying into execution the foregoing powers Why did the ayatollah khomeini hate the united states. A refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30 degrees by rejecting its waste heat to cooling water that enters the condenser at 18 degrees at a rate of. 25 kg/s and leaves at 26 degrees. The refrigerant enters the condenser at 1. 2 MPa and 65 degrees and leaves at 42 degrees. The inlet state of compressor is 60 kPa and -34 degrees and the compressor is estimated to gain a net heat of 450 W from the surroundings Starbucks has an agreement with pepsico through which pepsi distributes starbucks' coffee drink, frappuccino, to grocery stores and other retail outlets. This is an example of 5. 05 Political Cartoon Analysis Then and Now 1. What is the significance of what each person is saying? 2. What time period do you think this is from? It is from 2018 but what period does that represent? 3. Does it have a title? 4. What is this cartoon trying to say? Do you think it's effective? Identify 12P1 using factorialsa. 12!/13!b. 12! times 11!c. 12!/11!d. 12!/1!pls look at the pic