Dimensional analysis with shapes

Dimensional Analysis With Shapes

Answers

Answer 1

The surface area of the rectangular prism is 0.034 square meters.

For a rectangular prism with length l, width w, and height h, the surface area is:

Surface area = 2lw + 2lh + 2wh

Substituting the given values, we get:

Surface area = 2(10 cm x 5 cm) + 2(10 cm x 8 cm) + 2(5 cm x 8 cm)

Surface area = 100 cm² + 160 cm² + 80 cm² = 340 cm²

We can use dimensional analysis. So the conversion factor is:

1 m² / 10,000 cm²

Multiplying the surface area by this conversion factor, we get:

Surface area = 340 cm² x (1 m² / 10,000 cm²)

Surface area = 0.034 m²

To know more about rectangular prism, here

brainly.com/question/21308574

#SPJ1

--The complete Question is, What is the surface area of a rectangular prism that has a length of 10 cm, a width of 5 cm, and a height of 8 cm? Use dimensional analysis to convert the answer to square meters--


Related Questions

4. A silver bar with a mass of 300 grams is heated from 30 °C to 55 °C. How much heat does the silver ber absorb in joules? In kilojoules? The specific heat of silver is 0.235 g C​

Answers

A silver bar with the mass of the 300 grams is heated from the 30 °C to 55 °C. The amount heat does the silver bar absorb in the joules is 1762.5 J.

The mass of the silver bar = 300 g

The initial temperature = 30 °C

The final temperature = 55 °C

The heat energy is expressed as :

Q = mc ΔT

Where,

The m is mass of the silver bar = 300 g

The c is the specific heat capacity = 0.235 J/g °C

The ΔT is the change in the temperature = final temperature - initial temperature

The ΔT is the change in the temperature = 55 °C - 30 °C

The ΔT is the change in the temperature = 25 °C

The heat energy, Q = 300 × 0.235 × 25

The heat energy, Q = 1762.5 J

To learn more about heat here

https://brainly.com/question/9422819

#SPJ1

how many moles of a salute are needed to prepare 300 mL of 0.8 mm and NACL solution​

Answers

Answer: 0.24 Moles. WARNING: "mm" in the original question seems to be a typo and was assumed to be "M" (moles per liter) for concentration.

Explanation:

To calculate the number of moles of solute needed to prepare a solution, we can use the formula:

moles of solute = concentration (in moles per liter) * volume of solution (in liters)

Given:

Concentration of NaCl solution = 0.8 M (moles per liter)

Volume of solution to be prepared = 300 mL = 300/1000 L (converted to liters)

Plugging in the given values:

Concentration = 0.8 M

Volume of solution = 300/1000 L

moles of NaCl = 0.8 M * 300/1000 L

Calculating:

moles of NaCl = 0.24 moles

So, 0.24 moles of NaCl are needed to prepare 300 mL of a 0.8 M NaCl solution.

your answer to the following question on the information below and you knowledge of chemistry.
A 100. -gram sample of liquid water is heated from 30.0°C to 80.0°C. Enough KCIO:(s) is dissolved in the sample of water at 80.0°C to form a saturated solution.
Based on Table H, determine the vapor pressure of the water sample at its final temperature.

Answers

Explanation:

Table H lists vapor pressure data for pure water at various temperatures. We can use this data to estimate the vapor pressure of the water in the given system at its final temperature of 80.0°C.

First, we need to calculate the heat absorbed by the water sample during the heating process. We can use the specific heat capacity of water to do this:

q = m * c * ΔT

where q is the heat absorbed, m is the mass of water (100 g), c is the specific heat capacity of water, and ΔT is the temperature change (80°C - 30°C = 50°C).

Plugging in the values, we get:

q = 100 g * 4.18 J/(g*C) * 50 C

q = 20900 J

This tells us that 20,900 joules of energy were absorbed by the water sample during heating.

Next, we need to consider the saturated solution of KCIO3 in the water sample. At 80.0°C, the water is already close to boiling, so it is likely that the vapor pressure of the water in the system is close to the vapor pressure of pure water at this temperature. From Table H, we can see that the vapor pressure of pure water is approximately 356 mmHg at 80.0°C.

Therefore, the vapor pressure of the water in the given system at its final temperature of 80.0°C is approximately 356 mmHg.

What is the pH of the solution formed when 12.50 mL of 1.05 M KOH is added to 50.0 mL of 0.225 M HBr?

A. 0.65
B. 1.52
C. 12.48
D. 13.35

Answers

Answer: D

Explanation:

When 12.50 mL of 1.05 M KOH is added to 50.0 mL of 0.225 M HBr, the resulting solution has a pH of 13.35.

Here’s how to calculate it:

First, we need to determine the number of moles of KOH and HBr in the solution:

moles of KOH = (12.50 mL) * (1.05 mol/L) * (1 L/1000 mL) = 0.013125 mol moles of HBr = (50.0 mL) * (0.225 mol/L) * (1 L/1000 mL) = 0.01125 mol

KOH is a strong base and HBr is a strong acid, so they will react completely to form water and a salt (KBr):

KOH + HBr -> KBr + H2O

The number of moles of KOH is greater than the number of moles of HBr, so there will be an excess of KOH in the solution after the reaction is complete:

moles of excess KOH = moles of KOH - moles of HBr = 0.013125 mol - 0.01125 mol = 0.001875 mol

The total volume of the solution is the sum of the volumes of KOH and HBr:

total volume = 12.50 mL + 50.0 mL = 62.5 mL

The concentration of excess OH- ions in the solution is:

[OH-] = moles of excess KOH / total volume = 0.001875 mol / (62.5 mL * (1 L/1000 mL)) = 0.03 M

The pOH of the solution can be calculated using the formula pOH = -log[OH-]:

pOH = -log(0.03) = 1.52

The pH can be calculated using the formula pH + pOH = 14:

pH = 14 - pOH = 14 - 1.52 = 13.35

So the correct answer is D. 13.35.

Chemistry..... Reaction Rate
W → U + S Chemistry Reaction Rate use the table to find reaction rate
See reaction Rate Table Picture

Answers

The reaction rates for trial 1 is 8.22 x 10⁻² M⁻² s⁻¹ and 1.10 M⁻² s⁻¹ for trail 2 and 3

How to find reaction rate?

Keep the concentration of W constant while varying the concentrations of U and S while measuring the reaction rate in order to determine the reaction rate with regard to U and S.

Select trial 1 as the reference trial and calculate the reaction's rate constant (k) with respect to U and S, assuming that the concentration of W is constant throughout all three trials.

For trial 1:

[W] = 0.13 M

Rate = 4.72 x 10⁻⁴ M/s

For trial 2:

[W] = 0.13 M

Rate = 1.18 x 10⁻² M/s

From the equation rate = k[U][S], set up the following ratio of rates:

Rate2/Rate1 = (k[U]2[S]2)/(k[U]1[S]1)

Simplifying:

k = (Rate2/Rate1) x (1/[U]2) x (1/[S]2) x ([U]1) x ([S]1)

Substituting the values from trials 1 and 2:

k = (1.18 x 10⁻² M/s) / (4.72 x 10⁻⁴ M/s) x (1/0.65 M) x (1/1 M) x (0.13 M) x (1 M)

k = 8.22 x 10⁻²M⁻² s⁻¹

Similarly, for trial 3:

[W] = 0.13 M

Rate = 2.95 x 10⁻¹ M/s

Again, using trial 1 as the reference trial, figure out the reaction's rate constant (k) in relation to U and S:

k = (Rate3/Rate1) x (1/[U]3) x (1/[S]3) x ([U]1) x ([S]1)

k = (2.95 x 10⁻¹ M/s) / (4.72 x 10⁻⁴ M/s) x (1/3.25 M) x (1/1 M) x (0.13 M) x (1 M)

k = 1.10 M⁻² s⁻¹

Therefore, the equation states the reaction rate in relation to U and S is k = 8.22 x 10⁻² M⁻² s⁻¹ and 1.10 M⁻² s⁻¹ for trials 2 and 3, respectively.

Find out more on Reaction Rate here: https://brainly.com/question/24795637

#SPJ1

How many grams of zinc would you need to produce 8.45 grams of hydrogen?

Zn + H2SO4 --> ZnSO4 + H2

Answers

273.8 grams of zinc (Zn) are needed to produce 8.45 grams of hydrogen gas [tex](H_2).[/tex]

In this chemical reaction, zinc (Zn) reacts with sulfuric acid [tex](H_2SO_4)[/tex] to produce zinc sulfate  [tex](ZnSO_4)[/tex] and hydrogen gas [tex](H_2).[/tex]

From the balanced chemical equation, we can see that 1 mole of zinc (Zn) reacts with 1 mole of sulfuric acid [tex](H_2SO_4)[/tex] to produce 1 mole of hydrogen gas [tex](H_2).[/tex]

Hydrogen gas  has a molar mass of 2.016 g/mol.

Therefore, 8.45 grams of hydrogen gas is equal to 8.45 g / 2.016 g/mol = 4.19 moles of [tex]H_2[/tex].

Since 1 mole of Zn reacts with 1 mole of [tex]H_2[/tex] , we need 4.19 moles of Zn to produce 4.19 moles of [tex]H_2[/tex].

molar mass of Zinc = 65.38 g/mol.

Therefore, 4.19 moles of Zn has a mass of 4.19 moles x 65.38 g/mol = 273.8 grams.

Therefore, you would need 273.8 grams of zinc (Zn) to produce 8.45 grams of hydrogen gas [tex](H_2).[/tex]

For more such questions on zinc, click on:

https://brainly.com/question/490323

#SPJ11

All redox reactions form ionic bonds. True or False

Answers

Answer:

true

Explanation:

True your welcome byee

All changes save
3. Litharge, Pb0, is an ore that can be roasted (heated) in the presence of carbon monoxide, CO, to produce elemental lead. The
reaction that takes place during this roasting process is represented by the balanced equation below.
PbO(s) + CO(g) → Pb(s) + CO₂(g)
In which compound does carbon have the greater oxidation number

Answers

Answer:

Explanation:

In the given reaction, carbon has a greater oxidation number in carbon dioxide (CO₂) than in carbon monoxide (CO). In CO₂, the oxidation number of carbon is +4, while in CO it is +2.

5 moles of a monoatomic ideal gas is compressed reversibly and adiabatically. The initial volume is 6 dm3 and the final volume is 2 dm3. The initial temperature is 27°C.

(i) What would be the final temperature in this process?

(ii) Calculate w, q and ΔE for the process. Given Cv = 20.91 J K−1 mol−1, γ = 1.4

Answers

Final temperature: 677.4K. Work done: -7026J.

Heat exchanged: 0J. Change in internal energy: -7026J.

How to solve

(i) For an adiabatic process, T1(V1)^γ-1 = T2(V2)^γ-1.

When we substitute the values (γ=1.4, T1=300K, V1=6dm³, V2=2dm³), we get T2 = 677.4K.

(ii) w = -(P1V1 - P2V2)/(γ-1) = -(nRT1 - nRT2)/(γ-1) = -5 * 8.314 * (677.4 - 300) / 0.4 = -7026J.

For adiabatic, q = 0. ΔE = q + w = -7026J (since q=0).

Final temperature: 677.4K. Work done: -7026J.

Heat exchanged: 0J. Change in internal energy: -7026J.

Read more about temperature here:

https://brainly.com/question/25677592

#SPJ1

Potassium superoxide, KO2, reacts with carbon dioxide to form potassium carbonate and oxygen:

This reaction makes potassium superoxide useful in a self-contained breathing apparatus. How much O2 could be produced from 2.61 g of KO2 and 4.46 g of CO2?

Answers

First, we need to write out the balanced chemical equation for the reaction: 4 KO2 + 2 CO2 → 2 K2CO3 + 3 O2

From the equation, we can see that 4 moles of KO2 react with 2 moles of CO2 to produce 3 moles of O2. Therefore, we need to convert the given masses of KO2 and CO2 into moles:

moles of KO2 = 2.61 g / molar mass of KO2 = 2.61 g / 71.10 g/mol = 0.0367 mol
moles of CO2 = 4.46 g / molar mass of CO2 = 4.46 g / 44.01 g/mol = 0.1013 mol

Next, we need to determine the limiting reagent (the reactant that will be completely consumed in the reaction) by comparing the mole ratios of KO2 and CO2 in the balanced equation. The ratio of moles of KO2 to moles of CO2 is:
0.0367 mol KO2 / 4 mol KO2 per 2 mol CO2 = 0.0184 mol CO2

Since this ratio is less than the actual number of moles of CO2 we have (0.1013 mol), CO2 is in excess and KO2 is the limiting reagent.

Using the mole ratio from the balanced equation, we can calculate the number of moles of O2 produced:

moles of O2 = 3 mol O2 per 4 mol KO2 × 0.0367 mol KO2 = 0.0275 mol O2

Finally, we can convert the moles of O2 to grams:

mass of O2 = moles of O2 × molar mass of O2 = 0.0275 mol × 32.00 g/mol = 0.88 g
Therefore, 2.61 g of KO2 and 4.46 g of CO2 would produce 0.88 g of O2.

For more questions on: chemical

https://brainly.com/question/29886197

#SPJ11

A silver block, initially at 55.1∘C
, is submerged into 100.0 g
of water at 25.0∘C
in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.9∘C
. The specific heat capacities for water and silver are Cs,water=4.18J/(g⋅∘C)
and Cs,silver=0.235J/(g⋅∘C)
.

Answers

The mass of the silver block, given that it was initially at 55.1 °C  and is submerged into 100.0 g of water at 25.0°C is 189.8 g

How do i determine the mass of the silver?

We'll begin our calculation by obtaining the heat absorbed by the water. Details below:

Mass of water (M) = 100 gInitial temperature (T₁) = 25 °CFinal temperature (T₂) = 27.9 °CChange in temperature (ΔT) = 27.9 - 25 = 2.9 °CSpecific heat capacity of water (C) = 4.184 J/gºC Heat absorbed by water (Q) =?

Q = MCΔT

Q = 100 × 4.184 × 2.9

Q = 1213.36 J

Finally, we shall determine the mass of the silver block. Details below:

Heat absorbed by water (Q) = 6108.64 JHeat released by silver block (Q) = -1213.36 JInitial temperature of silver block (T₁) = 55.1 °CFinal temperature of silver block  (T₂) = 27.9 °CChange in temperature (ΔT) = 27.9 - 55.1 = -27.2 °C Specific heat capacity of silver (C) = 0.235 J/gºC Mass of silver block (M) =?

Q = MCΔT

-1213.36 = M × 0.235 × -27.2

-1213.36 = M × -6.392

Divide both sides by -6.392

M = -1213.36 / -6.392

M = 189.8 g

Thus, we can conclude that the mass of the silver block is 189.8 g

Learn more about mass:

https://brainly.com/question/1674804

#SPJ1

Complete question:

A silver block, initially at 55.1∘C, is submerged into 100.0 g of water at 25.0∘C in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.9∘C. The specific heat capacities for water and silver are Cs,water = 4.18J/(g⋅∘C) and Cs, silver = 0.235J/(g⋅∘C). What is the mass of the silver block?

determine the solubility of NH and 90° C​

Answers

The solubility of NH₃ in water at 90°C is approximately 0.03 g per 100 g of water.

What is the solubility of NH₃?

The solubility can be determined from a solubility table or by using the appropriate equilibrium constant.

According to a solubility table, the solubility of ammonia in water at 90°C is approximately 88 g per 100 g of water.

Alternatively, the equilibrium constant for the dissolution of ammonia in water at 90°C can be used to calculate the solubility.

The equilibrium constant (K) for the reaction:

NH3 (g) + H2O (l) ⇌ NH4+ (aq) + OH- (aq)

is approximately 1.76 x 10⁻⁵ at 90°C.

Using the equilibrium constant expression:

K = [NH4+][OH-]/[NH3][H2O]

Assuming that the concentration of water remains constant at 100 g per 100 g of solution, and that the concentration of NH4+ and OH- are negligible compared to that of NH3, the solubility of NH3 can be calculated as:

[NH3] = K[H2O] = 1.76 x 10⁻⁵ x 100 = 1.76 x 10⁻³ mol/L

Converting to grams per 100 g of water:

1.76 x 10⁻³ mol/L x 17.03 g/mol = 0.03 g/100 g of water

Learn more about solubility here: https://brainly.com/question/23946616

#SPJ1

The complete question is below:

determine the solubility of NH₃ in water at 90° C​

All changes saved
5. The head of matches contains an oxidizing agent such as potassium chlorate, KCIO3, together with tetraphosphorus trisulfide, P4S3.
glass, and binder. When struck either by an obect or on the side of a box of matches, the phosphorus sulfide compound is easily
ignited, causing the potassium chlorate to decompose into potassium chloride and oxygen. The oxygen in turn causes the
phosphorus sulfide to burn more vigorously.
Determine the oxidation number of chlorine in potassium chlorate.

Answers

The oxidation number of the unknown chlorine in the compound is + 5

What is oxidation number?

The oxidation number of an element in a compound is determined by a set of rules based on its position in the periodic table, as well as the charges of other atoms in the compound

We know that the oxidation number of the chlorine which we want to obtain would be designated as x and the total of the oxidation numbers of the elements in the compound is zero.

Thus we have that;

1 + x + 3(-2) = 0

1 + x - 6 = 0

-5 + x = 0

x = 5

Learn more about oxidation number:https://brainly.com/question/29263066

#SPJ1

Compared to chemical reactions, most nuclear reactions result in the
OA. formation of new compounds
OB. formation of new elements
O C. formation of new bonds
OD. loss of valence electrons

Answers

Answer:

OB. formation of new elements.

Nuclear reactions involve changes in the nucleus of an atom, such as the splitting of a nucleus or the combining of two nuclei. These reactions can result in the formation of new elements, as the number of protons in the nucleus determines the element. In contrast, chemical reactions involve the rearrangement of electrons between atoms to form new compounds, but do not involve changes to the nucleus.

in an experiment, 1 mol A, 2 mol B and 1 mol D were mixed and allowed to come to equilibrium at 25C. The resulting mixture was found to contain 0.9 mol of C at a total pressure of 1.00 bar. Find the mole fractions of each species at equilibrium

Answers

The mole fractions of each species at equilibrium are 0.25 for A and D, 0.5 for B, and 0.225 for C.

we can use the principles of chemical equilibrium and the mole fraction formula.

First, we need to write the balanced chemical equation for the reaction involving A, B, C, and D. Let's assume that the reaction is:

A + 2B <=> C + D

where A, B, C, and D are the chemical species, and the coefficients indicate their stoichiometric ratios.

Next, we need to write the expression for the equilibrium constant, Kc, for this reaction:

Kc = [C][D] / [A][B]²

where [X] denotes the molar concentration of species X at equilibrium.

Since we know the initial moles of A, B, and D, we can calculate their total moles in the mixture:

Total moles = 1 mol A + 2 mol B + 1 mol D = 4 mol

We also know that the final mixture contains 0.9 mol of C. Therefore, the molar concentration of C at equilibrium is:

[C] = 0.9 mol / 4 L = 0.225 M

Since we have only one unknown, we can use the equilibrium constant expression to calculate the molar concentration of D:

Kc = [C][D] / [A][B]²

0.9 = (0.225)(D) / (1)(2²)

D = 1.8

Therefore, the molar concentration of D at equilibrium is 1.8 M.

Using the law of conservation of mass, we can also calculate the molar concentration of A and B at equilibrium:

[A] = 1 mol / 4 L = 0.25 M

[B] = 2 mol / 4 L = 0.5 M

Mole fraction of X = moles of X / total moles

Mole fraction of A = 1 mol / 4 mol = 0.25

Mole fraction of B = 2 mol / 4 mol = 0.5

Mole fraction of C = 0.9 mol / 4 mol = 0.225

Mole fraction of D = 1 mol / 4 mol = 0.25

Therefore, the mole fractions of each species at equilibrium are 0.25 for A and D, 0.5 for B, and 0.225 for C.

learn more about equilibrium here

https://brainly.com/question/517289

#SPJ1

1. Which metal is the most reactive? How do you know this?
2. Rank the metals in order of increasing reactivity.
3. Give the chemical equations for each single replacement reaction that took place.
4. Was Fe^3+ reduced? Of so what metal(s) acted as reducing agents?

Answers

1. The most reactive metal is Francium (Fr). This is because it has the lowest ionization energy and the highest electronegativity among all the elements in the periodic table. However, Francium is a very rare and unstable element, so it is not commonly used in chemical reactions.

2. The metals can be ranked in order of increasing reactivity as follows: Gold (Au), Silver (Ag), Copper (Cu), Mercury (Hg), Lead (Pb), Tin (Sn), Iron (Fe), Zinc (Zn), Aluminum (Al), Magnesium (Mg), Sodium (Na), Potassium (K), Calcium (Ca).

3. The chemical equations for each single replacement reaction that took place are:

a. Zinc (Zn) + Copper (II) sulfate (CuSO4) → Zinc sulfate (ZnSO4) + Copper (Cu)
b. Iron (Fe) + Copper (II) sulfate (CuSO4) → Iron (II) sulfate (FeSO4) + Copper (Cu)
c. Aluminum (Al) + Copper (II) sulfate (CuSO4) → Aluminum sulfate (Al2(SO4)3) + Copper (Cu)

4. Yes, Fe^3+ was reduced to Fe^2+. The reducing agents were Zinc (Zn), Iron (Fe), and Aluminum (Al) which all have a higher reactivity than Fe.

How many grams of Al are needed to react with 352 mL of a 1.65 M HCl solution? Given the equation 2Al + 6HCl yields to form 2AlCl3 + 3H2

Answers

5.221 grams of Al are required to react with 352 mL of 1.65 M HCl solution.

What is meant by molarity?

Molarity (M) is defined as the moles of solute per liter of the solution.

Balanced chemical equation is : 2Al + 6HCl → 2AlCl₃ + 3H₂

From the equation, we can see that 2 moles of Al react with 6 moles of HCl to produce 2 moles of AlCl₃ and 3 moles of H₂.

As moles of HCl = Molarity × Volume

moles of HCl = 1.65 mol/L × 0.352 L

moles of HCl = 0.58128 mol

and moles of Al = (2/6) × moles of HCl

moles of Al = (1/3) × 0.58128 mol

moles of Al = 0.19376 mol

mass of Al = moles of Al × molar mass of Al

mass of Al = 0.19376 mol × 26.98 g/mol

mass of Al = 5.221 g

So, 5.221 grams of Al are required to react with 352 mL of 1.65 M HCl solution.

To know more about molarity, refer

https://brainly.com/question/14469428

#SPJ1

A gas‑filled weather balloon has a volume of 56.0 L
at ground level, where the pressure is 761 mmHg
and the temperature is 23.1 ∘C.
After being released, the balloon rises to an altitude where the temperature is −6.97 ∘C
and the pressure is 0.0772 atm.
What is the weather balloon's volume at the higher altitude?

Answers

We can use the combined gas law to determine the volume of the balloon at a higher altitude. The combined gas law relates the pressure, volume, and temperature of a gas:

(P1 x V1) / T1 = (P2 x V2) / T2

where P1, V1, and T1 are the pressure, volume, and temperature of the gas at the initial state, and P2, V2, and T2 are the pressure, volume, and temperature of the gas at the final state.

We are given the initial pressure (P1 = 761 mmHg), volume (V1 = 56.0 L), and temperature (T1 = 23.1 °C = 296.25 K) of the gas, and the final pressure (P2 = 0.0772 atm), and temperature (T2 = -6.97 °C = 266.18 K) of the gas. We can solve for V2, the final volume of the gas:

(P1 x V1) / T1 = (P2 x V2) / T2

V2 = (P1 x V1 x T2) / (P2 x T1)

V2 = (761 mmHg x 56.0 L x 266.18 K) / (0.0772 atm x 296.25 K)

V2 = 2,040 L (rounded to three significant figures)

Therefore, the volume of the weather balloon at the higher altitude is approximately 2,040 L.

A 250.0-mL flask contains 0.2500 g of a volatile oxide of nitrogen. The pressure in the flask is 760.0 mmHg at 17.00°C. How many moles of gas are in the flask?

Answers

Answer:

0.0104 moles of gas in the flask.

Explanation:

To calculate the number of moles of gas in the flask, you can use the ideal gas law equation: PV = nRT. Where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant and T is temperature.

First, you need to convert the pressure from mmHg to atm and the temperature from Celsius to Kelvin. The pressure in atm is 760.0 mmHg / 760 mmHg/atm = 1 atm. The temperature in Kelvin is 17.00°C + 273.15 = 290.15 K.

Next, you need to convert the volume from mL to L. The volume in L is 250.0 mL / 1000 mL/L = 0.2500 L.

Now you can plug all the values into the ideal gas law equation and solve for n: (1 atm)(0.2500 L) = n(0.08206 L·atm/mol·K)(290.15 K). Solving for n gives n = 0.0104 mol.

So there are approximately 0.0104 moles of gas in the flask.

Pleae answer 2a and 2b

Answers

A chemical interaction between an acid and a base is known as an acid-base reaction.

Thus, These are known as acid-base theories, such as the Brnsted-Lowry acid-base theory, and they offer alternative conceptions of the reaction mechanisms and their application in solving related problems.

When examining acid-base reactions for gaseous or liquid species, or when the acid or basic character may be less obvious, their significance becomes clear.

The relative potency of the conjugated acid-base pair in the salt controls the pH of its solutions when weak acids and bases react. The resulting salt or its solution can be basic, neutral, or acidic. A strong acid and a weak base can combine to generate an acid salt.

Thus, A chemical interaction between an acid and a base is known as an acid-base reaction.

To learn more about Acid base, refer to the link:

https://brainly.com/question/12883745

#SPJ1

If 12.5 mol
of an ideal gas occupies 50.5 L
at 69.00 ∘C,
what is the pressure of the gas?

Answers

The pressure of a gas that occupies 50.5L at 69.0°C is 6.95 atm.

How to calculate pressure?

The pressure of an ideal gas can be calculated using Avogadro's equation as follows;

PV = nRT

Where;

P = pressureV = volume n = no of molesT = temperatureR = gas law constant

According to this question, 12.5 mol of an ideal gas occupies 50.5 L at 69.00°C. The pressure can be calculated as follows:

P × 50.5 = 12.5 × 0.0821 × 342

50.5P = 350.9775

P = 6.95 atm

Learn more about pressure at: https://brainly.com/question/15354399

#SPJ1

Suppose a skimmer and a gull eat the same fish Over time the skimmer is more successful at catching the fish what would happen to each bird population

Pls help

Answers

If a skimmer and a gull eat the same fish and the skimmer is more successful at catching the fish over time, it is likely that the skimmer population would increase, while the gull population may decrease.

What is the skimmer's success in catching the fish?

The skimmer's success in catching the fish would give it an advantage in obtaining the necessary nutrients for survival and reproduction. As a result, the skimmer population would likely grow over time as more individuals are able to survive and reproduce due to the abundance of food.

On the other hand, the gull population may decrease due to the competition with the skimmer for the same food source. If the skimmer population grows significantly, it may lead to a reduction in the availability of fish for the gulls to feed on. Over time, this could result in a decline in the gull population due to reduced food availability.

However, it is important to note that the impact on the bird populations may depend on various factors such as the size of the populations, availability of other food sources, and environmental factors. Therefore, the outcome of this scenario cannot be predicted with certainty and would require further analysis and investigation.

Learn more about skimmer's here:https://brainly.com/question/9835238

#SPJ1

How many g Al must react with iodine to form AlI₃ via the following reaction scheme to release -836.0 kJ of heat? 2 Al(s) + 3 I₂(s) → 2 AlI₃(s)
∆H = -302.9 kJ

Answers

The mass (in grams) of aluminum, Al that must react with iodine to form AlI₃, given that -836.0 KJ of heat is relaesd is 149.0 g

How do i determine the mass aluminum required?

The mass of aluminum required to react with iodine to produce AlI₃ can be obtain as shown below:

2Al(s) + 3I₂(s) → 2AlI₃(s) ∆H = -302.9 KJ

Molar mass of aluminum, Al = 27 g/molMass of aluminum, Al from the balanced equation = 2 × 27 = 54 g

From the balanced equation above,

When -302.9 KJ of heat energy is released, 54 g of aluminum, Al reacted.

Therefore,

When -836.0 KJ of heat energy will be release = (-836.0KJ × 54 g) / -302.9 KJ = 149.0 g of aluminum, Al will react.

Thus, from the above calculation, we can conclude that the mass of aluminum, Al required is 149.0 g

Learn more about mass:

https://brainly.com/question/21940152

#SPJ1

Question 8 of 21
Which nucleus completes the following equation?

Answers

The nucleus completing the following equation is option C: ₂₄⁵⁰Cr.

This reaction is a type of radioactive nuclei decay.

What is radioactive decay?

Radioactive decay is the process by which unstable atomic nuclei undergo spontaneous transformations in order to achieve a more stable state. This is accomplished by the emission of particles and/or electromagnetic radiation from the nucleus. The decay may occur by several mechanisms, including alpha decay, beta decay, gamma decay, and electron capture.

In alpha decay, the nucleus emits an alpha particle, which consists of two protons and two neutrons, resulting in a daughter nucleus that has two fewer protons and two fewer neutrons than the original nucleus.

In beta decay, a neutron in the nucleus is converted into a proton and an electron, and the electron is then emitted from the nucleus as a beta particle. This results in the daughter nucleus having one more proton and one fewer neutron than the original nucleus.

In gamma decay, the nucleus emits a gamma ray, which is a high-energy electromagnetic radiation, without changing the number of protons or neutrons in the nucleus.

In electron capture, an electron from the inner shell of the atom is captured by the nucleus, and a proton in the nucleus is converted into a neutron. This results in the daughter nucleus having one fewer proton and one more neutron than the original nucleus.

Learn more about nucleus here:

https://brainly.com/question/17704494

#SPJ1

You perform a reaction in a coffee cup calorimeter. The calorimeter has 100 mL of water in it, and the temperature of the water increases by 9.3°C. The calorimeter has a heat capacity of 50.2 J/°C. How much heat was produced by the reaction (specific heat capacity of water is 4.184 J/g-°C)?

Answers

We can use the equation:

q = m * c * ΔT

where q is the heat absorbed or released by the water, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature of the water.

Since we know that the calorimeter contains 100 mL (or 100 g, since 1 mL of water has a mass of 1 g) of water and that the temperature of the water increased by 9.3°C, we can plug in these values:

q = (100 g) * (4.184 J/g-°C) * (9.3°C)

q = 3896.68 J

However, this is not the total amount of heat produced by the reaction. We need to take into account the heat absorbed by the calorimeter itself, which has a heat capacity of 50.2 J/°C. If we assume that the temperature of the calorimeter did not change during the reaction (i.e., it remained constant), we can calculate the heat absorbed by the calorimeter:

q_calorimeter = (50.2 J/°C) * (9.3°C)

q_calorimeter = 466.86 J

The total heat produced by the reaction is then:

q_reaction = q_water + q_calorimeter

q_reaction = 3896.68 J + 466.86 J

q_reaction = 4363.54 J

Therefore, the heat produced by the reaction is 4363.54 J.

What mass of oxygen would be released by the thermal decomposition of 918.7 grams of Mercury (II) Oxide?

HgO --> Hg + O2

Answers

Answer:

Explanation:

[tex]\frac{918.7 g}{1} *\frac{1}{216.59m } = 4.241 mol[/tex] To start off the mol of HgO must be found.

After that the molar ratio between HgO and O must be found but in this case its 1:1

[tex]4.241 mol HgO*\frac{1 molO}{1molHgO} = 4.241 mol O[/tex] the mols of HgO is put on the bottom to cancel out  with the other one leaving just mols of oxygen. Finally to find g of oxygen it must be multiplied by its molar mass.

[tex]\frac{4.241 molO}{1} * \frac{15.999 g}{mol} = 67.85 g[/tex] Oxygen

2. Using the law of conservation of mass, explain why the following reaction is
wrong: HCI + NaOH → NaCl.

Answers

According to the law of conservation of mass, the mass of the reactant must be equal to the mass of the product, hence the reaction is wrong

What is the conservation of mass?

The law of conservation of mass states that mass within a closed system remains the same over time.

It states that the mass in an isolated system can neither be created nor be destroyed but can be transformed from one form to another.

Thus,  the mass of the reactants must be equal to the mass of the products for a low energy thermodynamic process.

From the information given, we have the reaction written as;

HCI + NaOH → NaCl

The mass of the reactant Hydrogen(H) is not found on the product

The mass of the reactant(Oxygen) is also not found

Learn more about law of conservation of mass at: https://brainly.com/question/15289631

#SPJ1

What is the S-P difference (sec)?
What is the amplitude (mm)?
What isthe distance (km)?
What is the magnitude (M)?

Answers

The S-P difference (sec) is the time gap between the arrival of the S-wave and the arrival of the P-wave at a seismic station. The S-P discrepancy is depicted in the figure as 20 seconds.

The amplitude (mm) of a seismic wave is the largest displacement from its resting point. The amplitude of the waves is not depicted in the image and cannot be calculated based on the information provided.

Distance (km): Using the S-P time difference and the known velocity of seismic waves, the distance from the seismic station to the earthquake epicenter may be determined. Seismic wave velocity is determined by the type of wave and the features of the Earth's interior. The velocity of P-waves in the Earth's crust, for example, is around 6 km/s. We may compute the distance to the epicenter using this value and the S-P difference of 20 seconds as follows:

Distance = Speed x Time = 6 km/h x 20 seconds = 120 kilometres

As a result, the distance between the seismic station and the earthquake epicenter is about 120 km.

The magnitude of an earthquake (M) is a measurement of the energy generated by the earthquake based on the amplitude of the seismic waves and the distance to the epicenter. Magnitude is commonly measured on a logarithmic scale, with each whole number reflecting a factor of ten increase in energy release.

learn more about magnitude here

https://brainly.com/question/24468862

#SPJ1

HELP PLEASE
A 6.50-g sample of copper metal at 25.0 °C is heated by the addition of 145 J of energy. The final temperature of the copper is ________ °C. The specific heat capacity of copper is 0.38 J/g-K.
58.7
33.7
83.7
25.0
33.5

Answers

A 6.50-g sample of copper metal at 25.0 °C is heated by the addition of 145 J of energy. The final temperature of the copper is 83.7 °C. The specific heat capacity of copper is 0.38 J/g-K.

The correct answer choice is "83.7"

To solve this problem, we can use the equation:

q = mcΔT

where q is the amount of energy absorbed by the copper, m is the mass of the copper, c is the specific heat capacity of copper, and ΔT is the change in temperature of the copper.

Rearranging this equation to solve for ΔT, we get:

ΔT = q / (mc)

Substituting the given values, we get:

ΔT = 145 J / (6.50 g x 0.38 J/g-K)

ΔT = 58.7 K

Therefore, the final temperature of the copper is:

25.0 °C + 58.7 °C = 83.7 °C

So the correct option is 83.7.

For more such questions on temperature, click on:

https://brainly.com/question/4735135

#SPJ11

The following equations represent chemical
reactions.
Chemical Reactions
1) 2Na+2H₂O →NaOH + H₂
2) H₂+O₂ H₂O
3) MgCl₂ → MgCl₂
4) NaOH+MgCh→ NaCl + MgOH
Which equation shows that the total mass during a chemical reaction stays the same?

Answers

The equation that shows that the total mass during a chemical reaction stays the same is 2) H₂ + O₂ → H₂O.

This is an example of a balanced chemical equation where the number of atoms of each element on both the reactant and product side is equal. In other words, the total number of atoms of each element is conserved, and therefore the total mass is conserved. In the other reactions, either the number of atoms on the product side is different from the reactant side or there is no reaction at all.

Learn more about balanced chemical equation, here:

https://brainly.com/question/28294176

#SPJ1

Other Questions
How many moles of chnhcl need to be added to 200.0 ml of a 0.500 m solution of chnh (kb for chnh is 4.4 10) to make a buffer with a ph of 11? Llungby AB spent 1,000,000 krone in 2020 on the development of a new product. The company determined that 25 percent of this amount was incurred after the criteria in IAS 36 for capitalization as an intangible asset had been met. The newly developed product is brought to market in January 2021 and is expected to generate sales revenue for five years. Assume that Llungby AB is a foreign company using IFRS and is owned by a company using U. S. GAAP. Thus, IFRS balances must be converted to U. S. GAAP to prepare consolidated financial statements. Ignore income taxes. Required: Prepare journal entries for development costs for the years ending December 31, 2020, and December 31, 2021, under (1) IFRS and (2) U. S. GAAP. Prepare the entry(ies) that the U. S. Parent would make on the December 31, 2020, and December 31, 2021, conversion worksheets to convert IFRS balances to U. S. GAAP Think about prime numbers and composite numbers.list all the digits that are the last digit of at least one prime number. 3. Which of the following describes how Henry Ward Beecher attempted to support the antislavery cause in Kansas?A. Beecher petitioned to the president and tried to encourage him to bring the conflict to an end.B. Beecher wrote a passionate plea to the people of Kansas, which was reprinted in newspapers across the country.C. Beecher introduced a bill to Congress which, if it had passed, would have made slavery illegal.D. Beecher raised funds so that rifles could be purchased and sent to the antislavery supporters. write a program in Python to calculate a year DIARY ENTRIES 291 Your best friend has informed you that he/she will be visiting you on your birthday to give you a surprise gift. Write TWO diary entries. The first entry must indicate how you felt BEFORE your friend's visit and the second entry must express how you felt AFTER your friend's visit. Estimate the uncertainty for measuring the coefficient of drag of 0. 1 on an object with a planform area A = 0. 5 m^2 as a function of velocity for velocities ranging from 1 m/sec to 100 m/sec (C_D = D/1/2 rho V^2 A) using a force balance that has a resolution of 1 N and a range of 1000N. The area is known with an uncertainty of 0. 15%, and the velocity is known with an uncertainty of 0. 1 m/s. The fluid density is inferred from the ideal gas law and where the temperature is known with an uncertainty of 1 degree C and the pressure is known with a certainty of 0. 2 kPa. Assume room temperature is 20 degree C and the pressure is atmospheric pressure Mwhat is the rate of return when 30 shares of stocka. purchased for $20/share, are sold for $720? thecommission on the sale is $6.ratereturn = [?] %give your answer as a percent rounded to thenearest tenth. Earthworm Rivals are building the set fortheir new music video. There is a tower madeof 9 glowing bricks that stands 5. 4 meters tall. If each of the bricks is the same exact size,how tall is each brick? Which of the following does not contain a sentence fragment?A.) When I started writing short stories, I wasn't very confident. But my confidence grew as time went on.B.) Looking back at my early writing. My characters weren't as strongly developed as I would have liked.C.) Understanding plot structure is a big part of writing success. But not all of it.D.) Narrative techniques help to make fiction seem more realistic. And appeal to the reader. Prove the following this:The number of left cosets of a subgroup is equal to the number of its right cosets? . given that z is a standard normal random variable, a positive value of z indicates that: question 2 options: a) the standard deviation of z is negative b) the probability associated with z is negative c) the value z is to the left of the mean d) the area between zero and z is negative. e) the value z is to the right of the mean A pumpkin was rolling down a hill that is 12. 3 miles long from top to bottom. The pumpkin achieved a final velocity of 42. 4 m/s and it took3. 5 minutes to roll down the hill The pumpkin had a mass of 4780 grams. What momentum AND force did the pumpkin have at thebottom of the hill? Please answer this please you will not understand how much this means 30 points At present, intercity services from Central to Lithgow have an end-to-end run-time of 2 hrs and 47 mins for all stops services through the Blue Mountains with limited stops through Sydney and operate at two hourly frequencies throughout the day, with additional services in morning and evening peak periods. To begin your evaluation, if services were to be reconfigured so that all intercity services that terminate at Mt Victoria were extended to terminate at Lithgow: 1. Calculate the number of train sets and operating crews needed to operate the half hourly intercity service from Central to Mt Victoria with an end-to-end run-time of 2 hours and 22 minutes (1 Mark) What possible theme does the excerpt suggest?a. a theme related to the value of intelligenceb. a theme related to the value of self-expression Conduct a needs assessment to determine how a network could benefit your family. Use three to five sentences to describe the results of your assessment. If you have more than one computer in your home, conduct the needs assessment based on the number of computers in your home. If you don't have one or more computers in your home, conduct the needs assessment as though every family member in your home over the age of five had their own computer. if the volume of a rectangular prism is 26,214 m3 and it has a height of 17 m what is the value of b , the area of the base ? A. 13,062 m2 B. 13,062 m3 C.1,542 m2 D. 1,542 m3 Translate the following statement into a mathematical equation:Five times a number, minus three, is twelve. Shrieves Casting Company is considering adding a new line to its product mix, and the capital budgeting analysis is being conducted by Sidney Johnson, a recently graduated MBA. The production line would be set up in unused space in Shrieves main plant. The machinerys invoice price would be approximately $200,000, another $10,000 in shipping charges would be required, and it would cost an additional $30,000 to install the equipment. The machinery has an economic life of 4 years, and Shrieves has obtained a special tax ruling that places the equipment in the MACRS 3year class. The machinery is expected to have a salvage value of $25,000 after 4 years of use. The new line would generate incremental sales of 1,250 units per year for 4 years at an incremental cost of $100 per unit in the first year, excluding depreciation. Each unit can be sold for $200 in the first year. The sales price and cost are both expected to increase by 3% per year due to inflation. Further, to handle the new line, the firms net working capital would have to increase by an amount equal to 12% of sales revenues. The firms tax rate is 40%, and its overall weighted average cost of capital is 10%. A. Define "incremental cash flow"- the difference between the cash flows the firm will have if it implements the project versus the cash flows it will have if it rejects the project. (1) Should you subtract interest expense or dividends when calculating project cash flow? Yes (2) Suppose the firm spent $100,000 last year to rehabilitate the production line site. Should this be included in the analysis? Explain. Yes, because the amount is part of the capital expenditure. (3) Now assume the plant space could be leased out to another firm at $25,000 per year. Should this be included in the analysis? If so, how? Yes, because it should be subtracted out of the annual revenue. (4) Finally, assume that the new product line is expected to decrease sales of the firms other lines by $50,000 per year. Should this be considered in the analysis? If so, how? Yes, it should also be subtracted out of the annual revenue. B. Disregard the assumptions in part a. What is Shrieves depreciable basis? What are the annual depreciation expenses? c. Calculate the annual sales revenues and costs (other than depreciation). Why is it important to include inflation when estimating cash flows? d. Construct annual incremental operating cash flow statements. E. Estimate the required net working capital for each year and the cash flow due to investments in net working capital. F. Calculate the aftertax salvage cash flow. G. Calculate the net cash flows for each year. Based on these cash flows, what are the projects NPV, IRR, MIRR, PI, payback, and discounted pay back? Do these indicators suggest that the proj ect should be undertaken?