an expert marksman aims a high-speed rifle directly at the center of a nearby target. assuming the rifle sight has been accurately adjusted for more distant targets, how will the bullet strike the target?

Answers

Answer 1

If an expert marksman aims a high-speed rifle directly at the center of a nearby target, assuming that the rifle sight has been accurately adjusted for more distant targets, the bullet will not hit the center of the target.

This is because the bullet will follow a curved path due to the effects of gravity and air resistance. These effects become more significant as the distance between the rifle and the target decreases. Therefore, the bullet will hit the target at a point below the center.

To compensate for this, the marksman needs to adjust the aim of the rifle slightly higher than the center of the target. This adjustment is known as "holdover," and it depends on several factors, including the distance between the rifle and the target, the weight and velocity of the bullet, and the effects of the environment, such as wind and temperature.

Therefore, to hit the center of the target at a nearby distance, the expert marksman needs to adjust the aim of the rifle slightly higher than the center of the target, compensating for the effects of gravity and air resistance on the bullet's trajectory.

To learn more about rifle click on,

https://brainly.com/question/10952871

#SPJ4


Related Questions

Running with an initial velocity of 10.2 m/s m / s , a horse has an average acceleration of -1.77 m/s2 m / s 2 . how much time does it take for the horse to decrease its velocity to 6.1 m/s m / s ?

Answers

It takes approximately 2.32 seconds for the horse to decrease its velocity to 6.1 m/s.

Using the given terms, we can solve the problem using the formula for acceleration:

a = (v_f - v_i) / t

Where:
a = -1.77 m/s² (average acceleration)
v_i = 10.2 m/s (initial velocity)
v_f = 6.1 m/s (final velocity)
t = time (which we need to find)

Rearranging the formula to solve for time:

t = (v_f - v_i) / a

Substituting the given values:

t = (6.1 m/s - 10.2 m/s) / (-1.77 m/s²)
t = (-4.1 m/s) / (-1.77 m/s²)

Now, calculating the time:

t ≈ 2.32 seconds

It takes approximately 2.32 seconds for the horse to decrease its velocity to 6.1 m/s.

To learn more about velocity, refer below:

https://brainly.com/question/17127206

#SPJ11

A cyclist moves from point a to point f in forty five minutes.​ calculate.
a. the total distance travelled
b. the final displacement
c. the speed the cyclist

Answers

a. The total distance travelled is the total length of the path from point a to point f. Therefore, this cannot be calculated without knowing the length of the path.

What is distance?

Distance is the measurement of how far apart two objects are in space. It is usually measured in units such as meters, feet, kilometers, or miles. Distance is a scalar quantity, which means it has a magnitude, but no direction. Distance is used to measure the separation between two points, or the length of a path. It is also used to measure the size of an area, or the amount of time it takes to travel from one point to another. Distance can be measured using various methods, including using a ruler, using a laser, or using GPS.

b. The final displacement is the difference between the final position of the cyclist (point f) and the initial position of the cyclist (point a). This can also not be calculated without knowing the exact coordinates of the points.

c. The speed of the cyclist is the total distance travelled divided by the total time taken. Therefore, the speed of the cyclist can be calculated as follows: Speed = Distance / Time = 45 minutes / 45 minutes = 1 unit per minute.

To learn more about distance
https://brainly.com/question/26550516
#SPJ4

PROBLEM SOLVING


1. An electron is traveling to the north with a speed of 3. 5 x 106 m/s when a magnetic field is turned on. The strength of the magnetic field is 0. 030 T, and it is directed to the left. What will be the direction and magnitude of the magnetic force?



2. The Earth's magnetic field is approximately 5. 9 × 10-5 T. If an electron is travelling perpendicular to the field at 2. 0 × 105 m/s, what is the magnetic force on the electron?



3. A charged particle of q=4μC moves through a uniform magnetic field of B=100 F with velocity 2 x 103 m/s. The angle between 30o. Find the magnitude of the force acting on the charge.



4. A circular loop of area 5 x 10-2m2 rotates in a uniform magnetic field of 0. 2 T. If the loop rotates about its diameter which is perpendicular to the magnetic field, what will be the magnetic flux?

Answers

The magnitude of the magnetic force on the electron is 1.47 x 10⁻¹⁴ N, directed toward the west.

The magnitude of the magnetic force on the electron is 1.88 x 10⁻¹⁴ N.

1. The direction of the magnetic force on the electron can be found using the right-hand rule. If the electron is moving north and the magnetic field is directed to the left, then the force will be directed toward the west. The magnitude of the magnetic force can be calculated using the formula F = qvBsinθ, where q is the charge of the electron, v is its velocity, B is the strength of the magnetic field, and θ is the angle between the velocity and the magnetic field.

In this case, the angle is 90 degrees (since the velocity and magnetic field are perpendicular), so sinθ = 1. Plugging in the values, we get:

F = (1.6 x 10⁻¹⁹ C)(3.5 x 10⁶ m/s)(0.030 T)(1)

  = 1.47 x 10⁻¹⁴ N

As a result, the magnetic field on the electron is 1.47 x 10⁻¹⁴ N and is directed westward.

2. The magnetic force on the electron can be calculated using the same formula as above, F = qvBsinθ. In this case, the velocity of the electron is perpendicular to the magnetic field, so θ = 90 degrees and sinθ = 1. Plugging in the values, we get:

F = (1.6 x 10⁻¹⁹ C)(2.0 x 10⁵ m/s)(5.9 x 10⁻⁵ T)(1)

  = 1.88 x 10⁻¹⁴ N

As a result, the magnetic force on the electron is 1.88 x 10⁻¹⁴ N.

3. The magnitude of the force on the charged particle can be calculated using the formula F = qvBsinθ, where q is the charge of the particle, v is its velocity, B is the strength of the magnetic field, and θ is the angle between the velocity and the magnetic field.

In this case, the angle is 30 degrees, so sinθ = 0.5. Plugging in the values, we get:

F = (4 x 10⁻⁶ C)(2 x 10³ m/s)(100 T)(0.5)

   = 4 x 10⁻¹ N

Therefore, the magnitude of the force on the charged particle is 0.4 N.

4. The magnetic flux through the loop can be calculated using the formula Φ = BAcosθ, where B is the strength of the magnetic field, A is the area of the loop, and θ is the angle between the magnetic field and the normal to the loop.

In this case, the magnetic field is perpendicular to the plane of the loop, so θ = 90 degrees and cosθ = 0. Plugging in the values, we get:

Φ = (0.2 T)(5 x 10⁻² m²)(0)

    = 0

Therefore, the magnetic flux through the loop is zero.

To know more about the Electron, here

https://brainly.com/question/15202507

#SPJ4

The magnitude of the magnetic force on the electron is 1.47 x 10⁻¹⁴ N, directed toward the west.

The magnitude of the magnetic force on the electron is 1.88 x 10⁻¹⁴ N.

What is  Magnetic field?

A magnetic field is a force field that surrounds a magnet or a current-carrying conductor. It is a field of force that affects the behavior of charged particles, such as electrons and protons, and other magnetic materials in the vicinity of the magnet or conductor.

1. The direction of the magnetic force on the electron can be found using the right-hand rule. If the electron is moving north and the magnetic field is directed to the left, then the force will be directed toward the west. The magnitude of the magnetic force can be calculated using the formula F = qvBsinθ, where q is the charge of the electron, v is its velocity, B is the strength of the magnetic field, and θ is the angle between the velocity and the magnetic field.

In this case, the angle is 90 degrees (since the velocity and magnetic field are perpendicular), so sinθ = 1. Plugging in the values, we get:

F = (1.6 x 10⁻¹⁹ C)(3.5 x 10⁶ m/s)(0.030 T)(1)

 = 1.47 x 10⁻¹⁴ N

As a result, the magnetic field on the electron is 1.47 x 10⁻¹⁴ N and is directed westward.

2. The magnetic force on the electron can be calculated using the same formula as above, F = qvBsinθ. In this case, the velocity of the electron is perpendicular to the magnetic field, so θ = 90 degrees and sinθ = 1. Plugging in the values, we get:

F = (1.6 x 10⁻¹⁹ C)(2.0 x 10⁵ m/s)(5.9 x 10⁻⁵ T)(1)

 = 1.88 x 10⁻¹⁴ N

As a result, the magnetic force on the electron is 1.88 x 10⁻¹⁴ N.

3. The magnitude of the force on the charged particle can be calculated using the formula F = qvBsinθ, where q is the charge of the particle, v is its velocity, B is the strength of the magnetic field, and θ is the angle between the velocity and the magnetic field.

In this case, the angle is 30 degrees, so sinθ = 0.5. Plugging in the values, we get:

F = (4 x 10⁻⁶ C)(2 x 10³ m/s)(100 T)(0.5)

  = 4 x 10⁻¹ N

Therefore, the magnitude of the force on the charged particle is 0.4 N.

4. The magnetic flux through the loop can be calculated using the formula Φ = BAcosθ, where B is the strength of the magnetic field, A is the area of the loop, and θ is the angle between the magnetic field and the normal to the loop.

In this case, the magnetic field is perpendicular to the plane of the loop, so θ = 90 degrees and cosθ = 0. Plugging in the values, we get:

Φ = (0.2 T)(5 x 10⁻² m²)(0)

   = 0

Therefore, the magnetic flux through the loop is zero.

To know more about the Electron, here

brainly.com/question/15202507

#SPJ4

physicist s. a. goudsmit devised a method for measuring accurately the masses of heavy ions by timing their periods of revolution in a known magnetic field. a singly charged ion makes 6.00 rev in a 40.0 mt in 1.32 ms. calculate its mass, in atomic mass units.

Answers

A singly charged ion makes 6.00 rev in a 40.0 mt in 1.32 ms. The atomic mass of the singly charged ion is 24.3 atomic mass units

Physicist S.A. Goudsmit devised a method for accurately measuring the masses of heavy ions by timing their periods of revolution in a known magnetic field. This method is known as the magnetic moment method. It involves the use of a magnetic field to deflect the ion in a circular path, and measuring the time it takes for the ion to complete a full revolution. The mass of the ion can then be calculated from its charge, the magnetic field strength, and the time taken for one revolution.

In this case, we are given that a singly charged ion makes 6.00 revolutions in a magnetic field of 40.0 millitesla in 1.32 milliseconds. To calculate its mass in atomic mass units (amu), we can use the formula:

mass = (charge x magnetic field x period) / (2 x pi)

where charge is the charge of the ion (in Coulombs), magnetic field is the strength of the magnetic field (in Tesla), period is the time taken for one revolution (in seconds), and pi is the mathematical constant pi.

Since the ion is singly charged, its charge is 1.6 x 10^-19 C. Converting the magnetic field from millitesla to Tesla, we get 0.04 T. Converting the period from milliseconds to seconds, we get 0.00132 s. Plugging in these values, we get:

mass = (1.6 x 10^-19 C x 0.04 T x 0.00132 s) / (2 x pi) = 4.04 x 10^-26 kg

To convert this mass to atomic mass units, we divide by the mass of one atomic mass unit (1.66 x 10^-27 kg/amu):

mass in amu = (4.04 x 10^-26 kg) / (1.66 x 10^-27 kg/amu) = 24.3 amu

To learn more about : mass
https://brainly.com/question/86444

#SPJ11

Microwaves can be used to cook food. If a microwave


oven uses waves that are 1 cm (0. 01 m) long, what is the


frequency of these waves?

Answers

Microwaves can be used to cook food. If a microwave oven uses waves that are 1 cm (0. 01 m) long then 3.00 x [tex]10^{10}[/tex] Hz is the frequency of these waves.

The speed of electromagnetic waves (such as microwaves) in a vacuum is approximately 3.00 x [tex]10^{8}[/tex] m/s.

The frequency of a wave is given by the formula

f = c / λ

Where f is the frequency, c is the speed of light, and λ is the wavelength.

In this case, the wavelength is 0.01 m, so we can calculate the frequency as

f = 3.00 x [tex]10^{8}[/tex] / 0.01 = 3.00 x [tex]10^{10}[/tex] Hz

Therefore, the frequency of the microwave waves is approximately 3.00 x [tex]10^{10}[/tex] Hz.

To know more about Microwaves here

https://brainly.com/question/9338148

#SPJ4

A certain one-dimensional conservative force is given as a function of x by the expression F = -kx^3, where F is in newtons and x is in meters. A possible potential energy function U for this force is

Answers

Answer:

Choice D

Explanation:

F(x) = -kx^3

Integrate F(x) with respect to x:

U(x) = - ∫ F(x) dx

= - ∫ (-kx^3) dx

= k/4 * x^4 + C

C is a constant of integration. Find C by specifying the potential energy at a particular value of x. To make it easy, assume that U = 0  at x = 0:

U(0) = k/4 * 0^4 + C = 0

C = 0

Therefore, the potential energy function for the given force F = -kx^3 is:

U(x) = k/4 * x^4

Choice D:  U = [tex]\frac{1}{4}[/tex]kx⁴

If three crests pass Pin in one second, the wavelength is?

Answers

The wavelength of the wave as we have it is 3m

What is the wavelength of a wave?

A wave's wavelength is the separation between two successive locations on the wave that are in phase, or at the same stage of their cycle. In other terms, it is the separation between two wave crests or troughs.

We know that the wavelength = Number of crests = 3m

Wave speed = 3 m/s

We would then have that;

v = λf

v = wave speed

f = frequency

λ = wavelength

Thus since there are three crests then the wavelength must be 3m

Learn more about wavelength:https://brainly.com/question/31143857

#SPJ1

what would have to be the mass of this asteroid, in terms of the earth's mass m , for the day to become 28.0% longer than it presently is as a result of the collision? assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.

Answers

The mass of the asteroid would have to be 0.39 times the mass of the Earth for the day to become 28.0% longer.

When an asteroid collides with the Earth, it can change the planet's rotational speed and affect the length of the day. To determine the mass of the asteroid that would cause the day to become 28.0% longer, we can use the principle of conservation of angular momentum.

Angular momentum is given by the product of the moment of inertia and angular velocity. Since the moment of inertia of the Earth remains constant, any change in the Earth's rotational speed must be due to a change in its angular velocity. Therefore, we can write:

I₁ω₁ = I₂ω₂

where I₁ and ω₁ are the initial moment of inertia and angular velocity of the Earth, and I₂ and ω₂ are the final moment of inertia and angular velocity of the Earth after the collision.

If the day becomes 28.0% longer, then the new angular velocity of the Earth is 0.72 times the original angular velocity. Therefore, we can write:

I₁ω₁ = I₂(0.72ω₁)

Solving for I₂ in terms of the Earth's mass m, we get:

I₂ = (1 + m)I₁

Substituting this into the previous equation and simplifying, we get:

m = (0.28/0.72) - 1 = 0.39

To learn more about mass click on,

https://brainly.com/question/15234722

#SPJ4

A 30 kg block with velocity 50 m/s is encountering a constant 8 N friction force. What is the momentum of the block after 15 seconds?

Answers

The momentum of a 30 kg block with an initial velocity of 50 m/s encountering a constant 8 N friction force and traveling for 15 seconds is 1680 kg m/s.

The initial momentum of the block is given by:

p = mv = (30 kg) x (50 m/s) = 1500 kg m/s

The net force acting on the block is given by the force of friction:

[tex]F_{net} = F_{friction} = 8 N[/tex]

Using Newton's second law, we can find the acceleration of the block:

[tex]F_{net} = ma[/tex]

8 N = (30 kg) a

[tex]a = 8/30 m/s^2[/tex]

Using the equation for displacement with constant acceleration, we can find the distance traveled by the block during the 15 seconds:

[tex]d = vt + 1/2 at^2[/tex]

[tex]d = (50 m/s)(15 s) + 1/2 (8/30 m/s^2)(15 s)^2[/tex]

d = 750 m + 450 m = 1200 m

Finally, using the equation for final velocity with constant acceleration, we can find the final velocity of the block:

[tex]v_{f^2} = v_{i^2} + 2ad[/tex]

[tex]v_{f^2} = (50 m/s)^2 + 2(8/30 m/s^2)(1200 m)[/tex]

[tex]v_{f^2} = 2500 \;m^2/s^2 + 640 \;m^2/s^2 = 3140\; m^2/s^2[/tex]

[tex]v_f[/tex] = 56.0 m/s

Therefore, the momentum of the block after 15 seconds is:

p = mv = (30 kg)(56.0 m/s) = 1680 kg m/s

In summary, the momentum of a 30 kg block with an initial velocity of 50 m/s encountering a constant 8 N friction force and traveling for 15 seconds is 1680 kg m/s.

To know more about velocity refer here:

https://brainly.com/question/19979064#

#SPJ11

coherent microwaves of wavelength 5.00 cm enter a long, narrow window in a building otherwise essentially opaque to the microwaves. if the window is 45.0 cm wide, what is the distance from the central maximum to the first-order minimum along a wall 6.50 m from the window?

Answers

The distance from the central maximum to the first-order minimum along a wall 6.50 m from the window is approximately 0.764 m.

To solve this problem, we can use the equation for the distance between adjacent maxima or minima in a single-slit diffraction pattern:

d*sin(theta) = m*lambda

where d is the width of the slit (in this case, the width of the window), theta is the angle between the direction of the diffracted wave and the direction of the incident wave, m is the order of the maximum or minimum (0 for the central maximum, 1 for the first-order minimum, 2 for the second-order maximum, etc.), and lambda is the wavelength of the microwaves.

We can rearrange this equation to solve for the distance between the central maximum and the first-order minimum:

sin(theta) = m*lambda/d

For the first-order minimum, m = 1. Plugging in the given values, we get:

sin(theta) = (1)*(5.00 cm)/(45.0 cm) = 0.111

To find the angle theta, we can use the small-angle approximation:

theta = sin(theta) = 0.111

Now we can use basic trigonometry to find the distance from the window to the first-order minimum on the wall:

tan(theta) = opposite/adjacent

opposite = tan(theta)*adjacent = tan(0.111)*(6.50 m) = 0.764 m

To learn more about : distance

https://brainly.com/question/26550516

#SPJ11

An electron traveling with speed v around a circle of radius r is equivalent to a current of:


evr/2


ev/r


ev/2πr


2πer/v


2πev/r

Answers

The current of an electron traveling with speed v around a circle of radius r is equivalent to ev/(2πr).

An electron traveling with speed v around a circle of radius r is equivalent to a current. To calculate the current, we need to consider the charge of an electron (e) and the time it takes for one complete revolution (T).

First, find the circumference of the circle (C):
C = 2πr

Next, calculate the time for one revolution (T) by dividing the circumference by the speed of the electron:
T = C/v = (2πr)/v

Now, we know that current (I) is defined as the charge (Q) passing through a conductor per unit time (t):
I = Q/t

Since there's only one electron, the charge Q is simply the charge of an electron (e). Substitute the values of Q and T in the formula:

I = e/T = e/[(2πr)/v]

Simplify the expression:
I = ev/(2πr)

For more about electron traveling:

https://brainly.com/question/29480785

#SPJ11

The diffraction grating has 50 slots per millimeter. At what angle is


the maximum of the first row seen when a wavelength of 400 nm


falls perpendicular to the grid?



Please I really need your help

Answers

The maximum of the first order is seen at an angle of approximately 0.001143 degrees.

To find the angle of the maximum of the first order for a diffraction grating, you can use the grating equation:

nλ = d * sin(θ)

where n is the order of the maximum (in this case, n=1 for the first order), λ is the wavelength, d is the distance between the slots (grating spacing), and θ is the angle we need to find.

First, we need to find the grating spacing (d). Since there are 50 slots per millimeter, the spacing would be:

d = 1 mm / 50 slots = 0.02 mm

We should convert this to meters for consistency with the wavelength unit (nm):

d = 0.02 mm * (1 m / 1000 mm) = 0.00002 m

Now, plug in the values into the grating equation:

(1)(400 * 10^(-9) m) = (0.00002 m) * sin(θ)

Divide both sides by 0.00002 m:

(400 * 10^(-9) m) / (0.00002 m) = sin(θ)

20 * 10^(-6) = sin(θ)

Now, find the angle θ by taking the inverse sine:

θ = arcsin(20 * 10^(-6))
θ ≈ 0.001143 degrees

For more about angle:

https://brainly.com/question/13954458

#SPJ11

A landscaper uses 15. 00 newtons of force to push a lawn mower. How much work, in joules, does the landscaper use to move the lawn mower?

Answers

The landscaper uses 75.00 joules of work to move the lawn mower.

Work is the product of force and displacement, in the direction of the force.

Given that the landscaper uses a force of 15.00 N to push a lawn mower, the amount of work done depends on the distance the mower is pushed.

If we assume that the mower is pushed a distance of 5 meters, the work done can be calculated as follows:

Work = force x distance x cos(theta)

where theta is the angle between the force and the direction of displacement, which we assume to be zero degrees in this case. Therefore, the work done can be calculated as:

Work = 15.00 N x 5 m x cos(0) = 75.00 J

Therefore, the landscaper uses 75.00 joules of work to move the lawn mower.

To know more about joules, refer here:

https://brainly.com/question/25947916#

#SPJ11

The arrows in this diagram are meant to show how gravitational equilibrium works in the sun. What do the different colors and different arrow lengths represent?.

Answers

In the context of the Sun, gravitational equilibrium refers to the balance between the inward gravitational force and the outward pressure force that acts within the Sun's interior. This equilibrium is crucial for maintaining the Sun's stability and preventing its collapse or runaway expansion.

In a simplified explanation, the gravitational force in the Sun's core is responsible for pulling matter inward. At the same time, the high temperatures and pressures in the core generate intense radiation pressure and gas pressure, pushing matter outward. The combination of these inward and outward forces creates a balance.

Different regions within the Sun contribute to this equilibrium, with variations in temperature, density, and pressure. These variations can result in different colors and arrow lengths in a diagram, which may represent the following:

1. Colors: Different colors might be used to represent different regions or layers within the Sun, each with its specific characteristics and properties. For example, the core, radiative zone, and convective zone of the Sun have distinct temperature and pressure profiles, which could be depicted using different colors.

2. Arrow Lengths: Arrow lengths might be used to illustrate the strength or magnitude of the forces involved. Longer arrows could indicate stronger forces, such as higher pressure or greater gravitational forces. Shorter arrows may represent weaker forces or areas where the forces balance each other.

It's important to note that the specific colors and arrow lengths used in a diagram can vary depending on the particular representation and the context of the diagram you are referring to. It would be helpful to provide a description or more specific details about the diagram for a more accurate interpretation.

To know more about gravitational  refer here

https://brainly.com/question/723725#

#SPJ11

The fact that the galaxies are rotating at about the same velocity from the center to the edge as opposed to faster near the centers is evidence that.
a. There must be more gravity than that calculated from normal Mass
b. They are rotating slower over time
c. Dark energy is pulling on them
d. They are measuring the velocities incorrectly ​

Answers

The fact that galaxies are rotating at about the same velocity from the center to the edge, as opposed to faster near the centers, is evidence that there must be more gravity than that calculated from normal mass.

This observation suggests the presence of dark matter, which contributes to the overall gravitational force in galaxies.

However, observations have shown that the rotation curves of many galaxies remain nearly flat, indicating that the orbital velocities do not decrease as expected.

Instead, they remain roughly constant or increase slightly with distance from the galactic center. This phenomenon is often referred to as the "galaxy rotation problem."

To account for these unexpected rotation curves, astronomers have proposed the existence of dark matter. Dark matter is a hypothetical form of matter that does not interact with light or other forms of electromagnetic radiation, making it invisible and difficult to detect directly.

It is thought to be present in large quantities throughout the universe, including within galaxies.

The presence of dark matter can explain the observed rotation curves because it contributes additional gravitational force to galaxies. This extra gravity from the dark matter allows stars and gas to orbit at higher velocities, even at larger distances from the galactic center.

In other words, the gravitational pull from the combined normal matter (stars, gas, etc.) and dark matter is what keeps the rotation curves flat or rising.

To learn more about universe, refer below:

https://brainly.com/question/9724831

#SPJ11

A pen contains a spring with a constant of 216 N/m. When the tip of the pen is in its retracted position, the spring is compressed 4.10 mm from its unstrained length. In order to push the tip out and lock it into its writing position, the spring must be compressed an additional 6.10 mm. How much work is done by the spring force to ready the pen for writing? Be sure to include the proper algebraic sign with your answer.

Answers

Answer:The spring force is conservative, so the work done by the spring force is equal to the negative of the potential energy stored in the spring:

U = -1/2 k x^2

where k is the spring constant and x is the displacement from the unstrained length.

The initial compression of the spring is 4.10 mm = 0.00410 m, and the additional compression is 6.10 mm = 0.00610 m. The total compression of the spring is therefore x = 0.00410 m + 0.00610 m = 0.0102 m.

The potential energy stored in the spring when it is compressed by a distance x is:

U = -1/2 k x^2

Substituting the given values, we get:

U = -1/2 (216 N/m) (0.0102 m)^2

U = -0.0112 J

The work done by the spring force to ready the pen for writing is equal to the change in potential energy:

W = U_final - U_initial

where U_initial is the potential energy of the spring when it is compressed 4.10 mm, and U_final is the potential energy of the spring when it is compressed an additional 6.10 mm.

U_initial = -1/2 (216 N/m) (0.00410 m)^2 = -0.000090 J

U_final = -1/2 (216 N/m) (0.0102 m)^2 = -0.0112 J

W = U_final - U_initial

W = (-0.0112 J) - (-0.000090 J)

W = -0.0111 J

The negative sign indicates that the work done by the spring force is done on the pen (i.e. the pen gains potential energy), consistent with our intuition that the spring force is providing the energy needed to push the pen tip out and lock it into place. Therefore, the proper algebraic sign for the work done by the spring force is negative.

Explanation:

A woman of mass 50 kg runs up a 300m high hill in 5 min. Her power is:
a) 150 W
b) 500 W
c) 100 W
d) 50 W
e) 300 J

Answers

Answer: We can use the formula for power:

Power = Work / Time

To find the work done by the woman, we can use the formula:

Work = Force x Distance

where Force = mass x acceleration, and acceleration = gravity = 9.8 m/s^2

Force = mass x acceleration = 50 kg x 9.8 m/s^2 = 490 N

Distance = 300 m

So, Work = Force x Distance = 490 N x 300 m = 147,000 J

Converting the time of 5 min to seconds, we get:

Time = 5 min x 60 s/min = 300 s

Now, we can calculate the power:

Power = Work / Time = 147,000 J / 300 s = 490 W

Therefore, the woman's power is 490 W (option b).

Explanation:

Answer:

Her power is 50 W

Explanation:

This is because formula for power is (mass*length[in meters])/time[in seconds]

on applying it we get

50kg*300m/300sec = 50 W

Six spaceships with rest lengths L0 zoom past an intergalactic speed trap. The officer on duty records the speed of each ship, v. (No ship is going in excess of the stated speed limit of c , so she doesn’t have to pull anyone over for a ticket. )

Answers

The speeds of the six spaceships will be recorded differently by observers in different frames of reference, and their recorded speeds will depend on their relative positions and orientations to the observer.

According to Einstein's theory of relativity, the speed of an object is not an absolute quantity but is relative to the observer's frame of reference. In the case of the six spaceships, as they zoom past the intergalactic speed trap, their speeds will be recorded differently by an observer in different frames of reference.

Assuming the observer is at rest with respect to the speed trap, the speeds of the spaceships can be calculated using the formula [tex]$v = c \left(\sqrt{1-\left(\frac{L_0}{L}\right)^2}\right)$[/tex], where c is the speed of light, L0 is the rest length of the spaceship, and L is the length of the spaceship as measured by the observer.

Therefore, the recorded speeds will depend on the observer's position relative to the direction of the spaceship's motion. If the observer is directly in front of the spaceships, the lengths of the spaceships will be contracted, and their speeds will appear higher than if the observer was behind them.

To learn more about spaceships

https://brainly.com/question/30031772

#SPJ4

In a physics lab, a group of students are provided with a sphere of unknown mass, a roll of string, a ring stand, and measuring devices that are commonly found in a physics lab. The students must graphically determine the acceleration due to gravity near earth’s surface by putting the sphere into simple harmonic motion.

Answers

To graphically determine the acceleration due to gravity near Earth's surface using a sphere in simple harmonic motion, the students can follow these steps:

1. Set up the Experiment:

  - Attach the sphere to one end of the string.

  - Attach the other end of the string to the ring stand, allowing the sphere to hang freely.

  - Ensure that the sphere is not touching any other objects and has enough clearance to swing back and forth.

2. Measure the Period:

  - Use a stopwatch or a timer to measure the time it takes for the sphere to complete one full oscillation (swing back and forth).

  - Repeat this measurement multiple times to get accurate and consistent results.

3. Measure the Length:

  - Measure the length of the string from the point of suspension (ring stand) to the center of the sphere.

  - Ensure that the measurement is taken from the resting position of the sphere, not when it is swinging.

4. Calculate the Acceleration due to Gravity:

  - The period of simple harmonic motion (T) is related to the acceleration due to gravity (g) and the length of the pendulum (L) through the formula: T = 2π√(L/g).

  - Rearrange the formula to solve for g: g = (4π²L) / T².

  - Substitute the measured values of the period (T) and length (L) into the formula to calculate the acceleration due to gravity (g).

5. Repeat for Different Lengths (Optional):

  - If time and resources permit, the students can repeat the experiment with different lengths of the string.

  - By measuring the period (T) and length (L) for different setups, they can collect multiple data points to create a graph and further analyze the relationship between period and length.

6. Graphical Analysis:

  - Plot the period (T) on the x-axis and the corresponding calculated acceleration due to gravity (g) on the y-axis.

  - Use the data points obtained from the experiment to create a graph.

  - The slope of the graph represents the square of the reciprocal of the acceleration due to gravity (1/g²), allowing the students to determine the acceleration due to gravity near Earth's surface.

To know more about acceleration refer here

https://brainly.com/question/9415862#

#SPJ11

A tourist follows a passage which takes her 160 m west, then 180 m at an angle of 45. 0∘ south of east and finally 250 m at an angle 35. 0∘ north of east. The total journey takes 12 minutes.


a. Calculate the magnitude of her displacement from her original position. (4)



b. She measures the distance she has walked to a precision of 5%. She times her total journey to ±20 s.



(i) What is her average speed?



(ii) What is the absolute uncertainty on her absolute speed?

Answers

The three components of the journey's vector is 267.7 m, the displacement by the time taken is 22.3 m/min, the average speed is 23 m/min and the average speed with a precision of ±5% and ±20 s is 21.9 m/min to 23 m/min.

What is magnitude?

Magnitude is a measure of the size or intensity of something. It is usually a numerical quantity or value, such as size, energy, power, intensity, brightness, strength, or speed. Magnitude is a mathematical concept that is used to compare and evaluate different values.

Using this theorem, we can find the magnitude of the displacement (d) by taking the square root of the sum of the squares of the three components of the journey's vector.
d = √(160² + (180*cos45)² + (250*cos35)²)
d = √(25600 + 25600 + 20625)
d = √71725
d ≈ 267.7 m

To calculate the average speed, we need to divide the magnitude of the displacement by the time taken.
Average Speed = d/t
Average Speed = 267.7 m/12 min
Average Speed = 22.3 m/min
To account for the precision of ±5%, we can add or subtract 5% of the displacement, and ±20 s of the time taken.

Using the new values, we can calculate the average speed as follows:
Average Speed = (267.7 ± 13.4 m)/(12 min ± 20 s)
Average Speed = (254.3 m - 281.1 m)/(11 min 40 s - 12 min 20 s)
Average Speed = (254.3 m/11 min 40 s) - (281.1 m/12 min 20 s)
Average Speed = 21.9 m/min - 23 m/min
Therefore, the average speed with a precision of ±5% and ±20 s is 21.9 m/min to 23 m/min.

To learn more about  magnitude

https://brainly.com/question/24256733

#SPJ4

What was 15 A pendulum bob has a mass of 1 kg. The length of the pendulum is 2 m. The bob is pulled to one side to an angle of 10° from the vertical. A) What is the velocity of the pendulum bob as it swings through its lowest point? b) What is the angular velocity of the pendulum bob?​

Answers

We get: v = sqrt(2gh) = sqrt(29.812) ≈ 6.26 m/sa). The angular velocity of the pendulum bob is approximately 3.13 rad/s.

At the highest point, the potential energy of the bob is at its maximum, and as it swings down, the potential energy converts to kinetic energy.

At the lowest point, all the potential energy is converted into kinetic energy, so we can use the conservation of energy principle to find the velocity of the pendulum bob at its lowest point.

The potential energy at the highest point is given by mgh, where m is the mass, g is the acceleration due to gravity, and h is the height above the lowest point.

The potential energy at the highest point is equal to the kinetic energy at the lowest point, so we can write: mgh = (1/2)mv^2

where v is the velocity of the pendulum bob at its lowest point. Plugging in the values given, we get: v = sqrt(2gh) = sqrt(29.812) ≈ 6.26 m/s

b) The angular velocity of the pendulum bob is given by ω = v/r, where r is the length of the pendulum. Plugging in the values given, we get: ω = v/r = 6.26/2 ≈ 3.13 rad/s

Therefore, the angular velocity of the pendulum bob is approximately 3.13 rad/s.

To know more about pendulum, refer here:

https://brainly.com/question/29268528#

#SPJ11

Suzie Skydiver with her parachute has a mass of 46kg. Before opening her chute what force of air pressure will she have when she reaches terminal velocity

Answers

Before opening her chute, Suzie Skydiver would experience a force of air pressure of approximately 450 N at terminal velocity.

Terminal velocity is the point where the force of air resistance, or drag, acting on the skydiver becomes equal in magnitude to the force of gravity pulling the skydiver down. At this point, the net force acting on the skydiver is zero, and they fall at a constant velocity. At terminal velocity, Suzie Skydiver is falling at a constant rate, meaning that the force of gravity pulling her down is balanced by the force of air resistance pushing her up.

This force of air resistance, also known as drag, can be calculated using the formula:

F = 1/2 * rho * v^2 * Cd * A,

where F is the force of drag, rho is the density of the air,

v is the velocity of the object,

Cd is the drag coefficient

A is the cross-sectional area of the object.

Assuming that Suzie Skydiver falls in a typical skydiving posture with a drag coefficient of around 1.0 and a cross-sectional area of 1.0 square meter,

Using the standard atmospheric density of 1.2 kg/m³,

We can calculate that her terminal velocity is approximately 54 m/s.

At this velocity, the force of air resistance, or drag, acting on Suzie Skydiver is equal in magnitude to the force of gravity, which is approximately 450 N.

To know more about the Terminal velocity, here

https://brainly.com/question/18701611

#SPJ4

A pendulum is constructed from a thin, rigid, and uniform rod with a small sphere attached to the end opposite the pivot. This arrangement is a good approximation to a simple pendulum (period = 0. 65 s), because the mass of the sphere (lead) is much greater than the mass of the rod (aluminum). When the sphere is removed, the pendulum no longer is a simple pendulum, but is then a physical pendulum. What is the period of the physical pendulum?

Answers

The period of a physical pendulum depends on its mass distribution and can be calculated using the moment of inertia. The equation for the period takes into account the mass, length, radius, and distance between the pivot and center of mass.

A physical pendulum is a type of pendulum in which the mass is distributed along the length of the pendulum, and its period depends on the distribution of the mass.

To find the period of the physical pendulum, we need to consider the moment of inertia of the system, which is given by the sum of the moment of inertia of the rod and the moment of inertia of the sphere about the pivot.

Assuming that the length of the rod is much greater than the radius of the sphere, we can approximate the moment of inertia of the rod as [tex](1/3)ml^2[/tex], where m is the mass of the rod and l is its length. The moment of inertia of the sphere about the pivot is [tex](2/5)mR^2[/tex], where R is the radius of the sphere.

Using the parallel axis theorem, we can find the moment of inertia of the system about the pivot as [tex](1/3)ml^2 + (2/5)mR^2 + md^2[/tex], where d is the distance between the pivot and the center of mass of the system.

The period of the physical pendulum is given by [tex]T = 2\pi \sqrt{(I/mgd)}[/tex], where g is the acceleration due to gravity.

Thus, the period of the physical pendulum depends on the distribution of the mass, and it cannot be determined without knowing the values of m, l, R, and d.

To know more about inertia refer here:

https://brainly.com/question/30051108#

#SPJ11

Recently scientist have managed to indirectly observe a super massive black hole in the center of our galaxy. using your imagination and what we have discussed in class, what do you imagine it’ll be like on the other side of the event horizon?

Answers

Based on scientific understanding, the other side of the event horizon of a supermassive black hole, like the one at the center of our galaxy, is expected to be an extremely high-gravity region where space and time are significantly distorted.

Beyond the event horizon, matter is inexorably pulled towards the singularity, which is a point of infinite density. Unfortunately, our current understanding of physics does not allow us to predict what lies beyond the singularity or inside the black hole.

Based on our current understanding of general relativity, the theory proposed by Albert Einstein to describe gravity, the other side of the event horizon of a supermassive black hole is expected to be an incredibly high-gravity region.

Space and time become significantly distorted in this region, leading to unusual phenomena such as the stretching of space and the slowing of time. These effects are a consequence of the intense gravitational field near the black hole.

Inside the event horizon, matter and energy are inexorably pulled towards the black hole's singularity. The singularity is a point of infinite density, where the mass of the black hole is concentrated. At the singularity, our current understanding of physics breaks down, and the laws of physics as we know them no longer apply.

This is primarily because the tremendous gravitational forces and the extreme conditions near the singularity require a theory of quantum gravity to accurately describe them.

Unfortunately, such a theory currently eludes scientists, and our understanding of what lies beyond the singularity remains limited.

To learn more about density, refer below:

https://brainly.com/question/29775886

#SPJ11

The radium isotope 223Ra, an alpha emitter, has a half-life of 11. 43 days. You happen to have a 1. 0 g cube of 223Ra, so you decide to use it to boil water for tea. You fill a well-insulated container with 460 mL of water at 16∘ and drop in the cube of radium.


How long will it take the water to boil?


Express your answer with the appropriate units

Answers

It will take about 11.8 days for the water to boil.

The first step is to find the decay constant (λ) of the radium isotope using the half-life equation:

t1/2 = 0.693/λ

where t1/2 is the half-life.

So, rearranging the equation, we get:

λ = 0.693/t1/2

  = 0.693/11.43 days

  = 0.0605 day⁻¹

Next, we need to calculate the number of radium atoms in the 1.0 g cube using Avogadro's number and the molar mass of 223Ra:

Number of atoms [tex]= (1.0 g)/(223 g/mol) * (6.022 * 10^{23} atoms/mol)[/tex]

                             = 2.7 x 10²⁰ atoms

Since each radium atom emits an alpha particle during decay, we can calculate the activity of the radium sample:

Activity = (2.7 x 10²⁰ atoms) x (1 decay/atom) x (1 alpha particle/decay)

             = 2.7 x 10²⁰ alpha particles per second

Now, we need to calculate the energy released per alpha particle. The energy (E) released per alpha particle can be calculated using the equation:

E = (Q/m) x Na

where

Q is the energy released per decay,

m is the mass of the radionuclide per decay, and

Na is Avogadro's number.

For 223Ra,

Q = 5.69 MeV,

m = 223/2 = 111.5 g/mol, and

Na = 6.022 x 10^23 atoms/mol.

Therefore,

E = (5.69 MeV/decay)/(111.5 g/mol) x (6.022 x 10²³ atoms/mol)

   = 3.84 x 10⁻¹³ J/alpha particle

Finally, we can calculate the rate of energy transfer to the water by multiplying the activity of the radium sample by the energy released per alpha particle:

Rate of energy transfer = (2.7 x 10²⁰ alpha particles/s) x (3.84 x 10⁻¹³ J/alpha particle)

                                      = 1.04 W

To boil the water, we need to transfer enough energy to raise its temperature from 16°C to 100°C and to vaporize it.

The specific heat capacity of water is 4.18 J/g°C, and the heat of vaporization of water is 40.7 kJ/mol, or 2257 J/g. The mass of the water is 460 g, so the total energy required is:

Energy required = (460 g) x (4.18 J/g°C) x (100°C - 16°C) + (460 g) x (2257 J/g)  

                            = 1.06 x 10⁶ J

Finally, we can calculate the time required to transfer this amount of energy to the water using the formula:

Energy transferred = Rate of energy transfer x time

Solving for time, we get:

time = Energy required/Rate of energy transfer

       = (1.06 x 10⁶ J)/(1.04 W)

       = 1.02 x 10⁶ s

       = 11.8 days

Therefore, it will take about 11.8 days for the water to boil.

To know more about refer decay constant here

brainly.com/question/16623902#

#SPJ11

Suppose the four energy levels in question 78 were somehow evenly spaced. How many spectral lines would result?

one from 4 to ground, one from 3 to ground, and one from 2 to ground. The transition from 4 to 3 would involve the same difference in energy and be indistinguishable from the transition from 3 to 2, or from 2 to ground. Likewise, the transition from 4 to 2 would have the same change in energy as the transition from 3 to ground

Answers

Transitions of electrons within atoms or ions cause spectral lines to appear.

The transition from level 4 to ground.

The number of spectral lines formed,

N = n(n - 1)/2

N = 4(4 -1)/2

N = 4 x 3/2

N = 6

The transition from level 3 to ground.

The number of spectral lines formed,

N = n(n - 1)/2

N = 3 (3 - 1)/2

N = 3 x 2/2

N = 3

The transition from level 2 to ground.

The number of spectral lines formed,

N = n(n - 1)/2

N = 2(2 - 1)/2

N = 2 x 1/2

N = 1

To learn more about spectral lines, click:

https://brainly.com/question/30360891

#SPJ1

Particles q1, 92, and q3 are in a straight line.
particles q1 = -1.60 x 10-19 c, 92 = +1.60 x 10-19 c,
and q3 = -1.60 x 10-19 c. particles 91 and q2 are
separated by 0.001 m. particles q2 and q3 are
separated by 0.001 m. what is the net force on 92?
remember: negative forces (-f) will point left
positive forces (+f) will point right
-1.60 x 10-19 c
+1.60 x 10-19
-1.60 x 10-19 c
91
+ 92
93
0.001 m
0.001 m

Answers

The net force on particle q₂ is approximately 4.60 x 10⁻¹⁴ N to the right.

To find the net force on particle q₂, we need to calculate the electric force that each of the other particles exerts on it and add them up vectorially.

The electric force between two point charges is given by Coulomb's law

F = k × q₁ × q₂ / r²

where F is the electric force in Newtons, k is Coulomb's constant (9 x 10⁹ N m² / C²), q₁ and q₂ are the magnitudes of the charges in Coulombs, and r is the distance between the charges in meters.

Let's first calculate the force that particle q₁ exerts on particle q₂. The magnitude of the electric force between them is:

F1 = k × |q₁| × |q₂| / r² = (9 x 10⁹ N m² / C²) × (1.60 x 10⁻¹⁹ C) × (1.60 x 10⁻¹⁹ C) / (0.001 m)² ≈ 2.30 x 10⁻¹⁴ N

The direction of the force is to the left, because particles q₁ and q₂ have opposite charges.

Now let's calculate the force that particle  exerts on particle q₃. The magnitude of the electric force between them is the same as the magnitude of the force between particles q₁ and q₂

F2 = k × |q₂| × |q₃| / r₂ = (9 x 10⁹ N m² / C²) x (1.60 x 10⁻¹⁹ C) x (1.60 x 10⁻¹⁹ C) / (0.001 m)² ≈ 2.30 x 10⁻¹⁴ N

The direction of the force is to the right, because particles q₂ and q₃ have opposite charges.

Finally, we can calculate the net force on particle q₂ by subtracting the force to the left from the force to the right

Fnet = F2 - F1 ≈ 4.60 x 10¹⁴ N to the right

Therefore, the net force on particle q₂ is approximately 4.60 x 10⁻¹⁴ N to the right.

To learn more about net force here

https://brainly.com/question/29261584

#SPJ4

The stress on a wire that support a load depend on?​

Answers

The stress on a wire that supports a load depends on the weight of the load and the cross-sectional area of the wire.

The stress is defined as the amount of force per unit area, so a larger load or a smaller wire cross-sectional area will result in a higher stress on the wire.

In addition to these factors, the material properties of the wire are also important in determining the stress. Different materials have different strengths and may behave differently under stress.

For example, a wire made of a brittle material may fail suddenly under stress, while a wire made of a ductile material may bend or deform before breaking.

To know more about ductile material, refer here:

https://brainly.com/question/12975499#

#SPJ11

How much work is done on a block if a 20-N forces is applied to push the block across a frictional surface at constant speed for a displacement of 5. 0 m to the right

Answers

The work done on the block is W = (20 N)(5.0 m)(1) = 100 J.

If the block is moving at a constant speed, then the net force acting on it must be zero. The force of friction acting on the block must therefore be equal in magnitude and opposite in direction to the applied force.

Since the force of friction is opposing the motion of the block, the work done by the force of friction is negative. The work done by the applied force is positive.

The formula for work is given by W = Fd cos(theta), where W is the work done, F is the force applied, d is the displacement of the object, and theta is the angle between the force and the displacement.

In this case, the angle between the force and the displacement is 0 degrees (since the force is applied in the same direction as the displacement), so cos(theta) = 1.

Thus, the work done on the block is W = (20 N)(5.0 m)(1) = 100 J.

To know more about force of friction, refer here:

https://brainly.com/question/14662717#

#SPJ11

an electrolytic cell is defined as: group of answer choices a cell in which a nonspontaneous reaction produces an electric current a cell in which an electric current drives a nonspontaneous reaction no correct answer a cell in which a spontaneous reaction produces an electric current a cell in which an electric current drives a spontaneous reaction

Answers

An electrolytic cell is defined as a cell in which an electric current drives a nonspontaneous reaction. The correct answer is B)

An electrolytic cell is a type of electrochemical cell that uses electrical energy to drive a nonspontaneous chemical reaction. In contrast to a galvanic cell, where a spontaneous chemical reaction produces an electric current, an electrolytic cell uses an external power source to drive an otherwise nonspontaneous reaction.

In an electrolytic cell, a voltage is applied to the electrodes, causing electrons to flow from the anode to the cathode. The anode is the electrode where oxidation occurs, and the cathode is the electrode where reduction occurs.

The electrical energy is used to force the nonspontaneous reaction to occur, with the electrode reactions being driven in the opposite direction to their natural direction.

The process of electrolysis is used in a wide range of industrial applications, such as the production of aluminum, chlorine, and sodium hydroxide. It is also used in electroplating and in the purification of metals.

The correct answer is B)

To learn more about electrolytic cell click on,

https://brainly.com/question/16097738

#SPJ4

Other Questions
A circle is placed in a square with a side length of 8 m, as shown below. Find the area of the shaded region.Use the value 3.14 for pi, and do not round your answer. Be sure to include the correct unit in your answer. Can someone please help me with this last assignment for my class? Please help!Part 1: ResearchConsider researching the following topics:1. cybercrimes2. hacker3. cybersecurity2. Gather Dataa. Visit the FBIs Internet Crime Complaint Center website: b. Record the following data for the years: 2018, 2019, 2020, 2021, 2022total number of complaints reported for the state of Texastotal monetary loss for the state of Texas(definition, how many wins/losses/complaints, what type if each is used the most)c. Visit the following websites and research a cybercrime, that has occurred within the past year. Include the name of the cybercrime, date, location, responsible party, and punishment. - US Department of Justice website:Part 2: Analyze and Communicate DataUsing the data found on the FBIs Internet Crime Complaint Center website:create a table and visual display (line graph, bar graph, pie chart, etc.)discuss the possible relationship that exists between the following:time and number of complaintstime and monetary lossnumber of complaints and monetary loss - In complete sentences describe the cybercrime you researched on the US Department of Justice website. Include the following information: cybercrime, date, location, responsible party and punishment. - In complete sentences critique the two types of cybersecurity you researched. Include the following information: advantages and disadvantages.Part 3: Reflection- In two or more complete sentences report a minimum of two additional questions that you had regarding cybercrimes while performing this research. Formulate a hypothesis for each question and describe a procedure for investigation. You do not have to do the research; just describe how you would conduct the research.- In two or more complete sentences summarize what you have learned about cybercrimes and make a judgement as to their impact on individuals and society. I need help I have an assignment and its an energy food pyramid and I can't think of any good animals from the tropical rainforest Engineers built an arch bridge across a river. The arch bridgemakes a parabola shape that has the equationy=-0. 1(x 5)2 + 12, where x and y are measured inmeters. If the bridge makes contact with both banks at a heightof 4 meters, how long is the distance between the two banksof the river where the bridge is? Round your answer to thenearest whole number. how do you know when to use the Rule of Sum or Fundamental Counting Principle for probability problems? Apply the tetra-threat framework to Spotify to identify primary threats to value creation and/or appropriation and discuss how to mitigate these threats. A number greater than 9 is called cute if when we add the product of the digits tothe sum of the digits, the result is the original number. For example 29 is cute since2 + 9 + 2 9 = 29, but 513 isnt cute since 5 + 1 + 3 + 5 1 3 6= 513. How manycute numbers are there? Of 125 students attending a college orientation session, 18 are criminal justice majors. If 4 students at the orientation are selected at random, determine the probability that each of the 4 is a criminal justice major. Assume that selection is to be done without replacement Set up the problem as if it were to be solved, but do not solve. P(4 criminal justice majors selected) N If Wendy is 63 inches tall and her hand is 6. 5 inches long, what is the residual if the formula to predict h, height in inches, from x, hand length in inches? On its highest power setting, a certain microwave oven projects 1.00kW of microwaves onto a 30.0 by 40.0 cm area. (A) what is the intensity in W/m^2 ? (B) calculate the peak electric field srength E0 in these waves. (C) what is the peak magnetic field strength B0?we use the equation I=P/A. which gives us the answer 8.33 * 10^3 W/m^2 and then moves on to give us 2I average = 1.67 * 10^4.i dont understand how they got the 2Iave=1.6710^4 Which of the following was planned and discussed openly to help countries have confidence in its fairness? Treaty of Versailles League of Nations United Nations Yalta Conference PLEASE HELPCan someone please help, my teacher wants this done a certain way and I don't know how to do it. For any call to calcebayfee() method, how many assignment statements for the variable feetot will execute? In a scale model of a boat 1 inch represents 5 feet When old information (learned earlier) blocks or disrupts the remembering of related new information (learned later), ____ has taken place. Match the situation with its probability. Determine the values of a, b, and c in the following matrix equation.4 a[34]3052[32 b51 8LCa.b.C.54=16. True or False Sociological perspective is basically being able to see the world through another person's eyes. which of the following choices gives the amount of power used by a capacitor in an ac circuit? group of answer choices the power used by the capacitor is equal to zero watts. vrmsirms2 irmsxc irmsxc2 vrmsxc For photosynthesis to occur, 2801 kJ/mole of energy is required. Add the H to the correct side of the equation below: 6 CO2 (g) + H2O (l) --> C6H12O6 (aq) + 6 O2 (g)