A long solenoid that has 1 080 turns uniformly distributed over a length of 0.420 m produces a magnetic field of magnitude 1.00 10-4 T at its center. What current is required in the windings for that to occur?

Answers

Answer 1

Answer:

Current, I = 0.073 A

Explanation:

It is given that,

Number of turns in a long solenoid is 1080

Length of the solenoid is 0.420 m

It produces a magnetic field of [tex]10^{-4}\ T[/tex] at its center.

We need to find the current is required in the winding for that to occur. The magnetic field at the center of the solenoid is given by :

[tex]B=\mu_0 NI[/tex]

I is current

[tex]I=\dfrac{B}{\mu_o N}\\\\I=\dfrac{10^{-4}}{4\pi \times 10^{-7}\times 1080}\\\\I=0.073\ A[/tex]


Related Questions

A 58.0 kg skier is moving at 6.00 m/s on a frictionless, horizontal snow-covered plateau when she encounters a rough patch 3.65 m long. The coefficient of kinetic friction between this patch and her skis is 0.310. After crossing the rough patch and returning to friction-free snow, she skis down an icy, frictionless hill 3.50 m high.

Required:
a. How fast is the skier moving when she gets to the bottom of the hill?
b. How much internal energy was generated in crossing the rough patch?

Answers

Answer:

a) v = 3.71m/s

b) U = 616.71 J

Explanation:

a) To find the speed of the skier you take into account that, the work done by the friction surface on the skier is equal to the change in the kinetic energy:

[tex]-W_f=\Delta K=\frac{1}{2}m(v^2-v_o^2)\\\\-F_fd=\frac{1}{2}m(v^2-v_o^2)[/tex]  

(the minus sign is due to the work is against the motion of the skier)

m: mass of the skier = 58.0 kg

v: final speed = ?

vo: initial speed = 6.00 m/s

d: distance traveled by the skier in the rough patch = 3.65 m

Ff: friction force = Mgμ

g: gravitational acceleration = 9.8 m/s^2

μ: friction coefficient = 0.310

You solve the equation (1) for v:

[tex]v=\sqrt{\frac{2F_fd}{m}+v_o^2}=\sqrt{\frac{2mg\mu d}{m}+v_o^2}\\\\v=\sqrt{-2g\mu d+v_o^2}[/tex]

Next, you replace the values of all parameters:

[tex]v=\sqrt{-2(9.8m/s^2)(0.310)(3.65m)+(6.00m/s)^2}=3.71\frac{m}{s}[/tex]

The speed after the skier has crossed the roug path is 3.71m/s

b) The work done by the rough patch is the internal energy generated:

[tex]U=W_fd=F_fd=mg\mu d\\\\U=(58.0kg)(9.8m/s^2)(0.310)(3.50m)=616.71\ J[/tex]

The internal energy generated is 616.71J

Which scientist was the first to propose the heliocentric model of the universe

Answers

Answer:

Nicolaus Copernicus

Explanation:

Nevertheless, Copernicus began to work on astronomy on his own. Sometime between 1510 and 1514 he wrote an essay that has come to be known as the Commentariolus (MW 75–126) that introduced his new cosmological idea, the heliocentric universe, and he sent copies to various astronomers

To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.

Answers

Answer:

The maximum energy stored in the combination is 0.0466Joules

Explanation:

The question is incomplete. Here is the complete question.

Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.

Energy stored in a capacitor is expressed as E = 1/2CtV² where

Ct is the total effective capacitance

V is the supply voltage

Since the capacitors are connected in series.

1/Ct = 1/C1+1/C2+1/C3

Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF

1/Ct = 1/11.7 + 1/21.0 + 1/28.8

1/Ct = 0.0855+0.0476+0.0347

1/Ct = 0.1678

Ct = 1/0.1678

Ct = 5.96μF

Ct = 5.96×10^-6F

Since V = 125V

E = 1/2(5.96×10^-6)(125)²

E = 0.0466Joules

For saving energy, bicycling and walking are far more efficient means of transportation than is travel by automobile. For example, when riding at 12.5 mi/h, a cyclist uses food energy at a rate of about 360 kcal/h above what he would use if merely sitting still. (In exercise physiology, power is often measured in kcal/h rather than in watts. Here 1 kcal = 1 nutritionist's Calorie = 4186 J). Walking at 3.20 mi/h requires about 220 kcal/h. It is interesting to compare these values with the energy consumption required for travel by car. Gasoline yields about 1.30.
A) Find the fuel economy in equivalent miles per gallon for a person walking.
B) Find the fuel economy in equivalent miles per gallon for a person bicycling.

Answers

Answer:

a. 451.72 mi/ga

b. 1078.33 mi/ga

Explanation:

The computation is shown below:

a. The fuel economy for a person walking is

Given that

Walking at 3.20 mi/h requires about 220 kcal/h so it is equal to

[tex]= 220 \times 4186[/tex]

= 920920 j/hr

Now

[tex]= \frac{mi}{j}[/tex]

[tex]= \frac{3.2}{920920}[/tex]

So,

[tex]= \frac{mi}{ga}[/tex]

[tex]= \frac{3.2}{920920}\times 1.3 \times 100000000[/tex]

= 451.72 mi/ga

b. Now

Bicycling 12.5 mi/h requires about 360 kcal/h  energy so it is equal to

[tex]= 360 \times 4186[/tex]

= 1506960 j/hr

So,

[tex]= \frac{mi}{j}[/tex]

[tex]= \frac{12.5}{1506960}[/tex]

Now

[tex]= \frac{mi}{ga}[/tex]

[tex]= \frac{12.5}{1506960} \times 1.3 \times 100000000[/tex]

= 1078.33 mi/ga

We simply applied the above formula

The concrete slab of a basement is 11 m long, 8 m wide, and 0.20 m thick. During the winter, temperatures are nominally 17 C and 10 C at the top and bottom surfaces, respectively. If the concrete has a thermal conductivity of 1.4 W/m K, what is the rate of heat loss through the slab

Answers

Answer:

Q = - 4312 W = - 4.312 KW

Explanation:

The rate of heat of the concrete slab can be calculated through Fourier's Law of heat conduction. The formula of the Fourier's Law of heat conduction is as follows:

Q = - kA dt/dx

Integrating from one side of the slab to other along the thickness dimension, we get:

Q = - kA(T₂ - T₁)/L

Q = kA(T₁ - T₂)/t

where,

Q = Rate of Heat Loss = ?

k = thermal conductivity = 1.4 W/m.k

A = Surface Area = (11 m)(8 m) = 88 m²

T₁ = Temperature of Bottom Surface = 10°C

T₂ = Temperature of Top Surface = 17° C

t = Thickness of Slab = 0.2 m

Therefore,

Q = (1.4 W/m.k)(88 m²)(10°C - 17°C)/0.2 m

Q = - 4312 W = - 4.312 KW

Here, negative sign shows the loss of heat.

Let’s consider tunneling of an electron outside of a potential well. The formula for the transmission coefficient is T \simeq e^{-2CL}T≃e ​−2CL ​​ , where L is the width of the barrier and C is a term that includes the particle energy and barrier height. If the tunneling coefficient is found to be T = 0.050T=0.050 for a given value of LL, for what new value of L\text{'}L’ is the tunneling coefficient T\text{'} = 0.025T’=0.025 ? (All other parameters remain unchanged.) Express L\text{'}L’ in terms of the original LL.

Answers

Answer:

L' = 1.231L

Explanation:

The transmission coefficient, in a tunneling process in which an electron is involved, can be approximated to the following expression:

[tex]T \approx e^{-2CL}[/tex]

L: width of the barrier

C: constant that includes particle energy and barrier height

You have that the transmission coefficient for a specific value of L is T = 0.050. Furthermore, you have that for a new value of the width of the barrier, let's say, L', the value of the transmission coefficient is T'=0.025.

To find the new value of the L' you can write down both situation for T and T', as in the following:

[tex]0.050=e^{-2CL}\ \ \ \ (1)\\\\0.025=e^{-2CL'}\ \ \ \ (2)[/tex]

Next, by properties of logarithms, you can apply Ln to both equations (1) and (2):

[tex]ln(0.050)=ln(e^{-2CL})=-2CL\ \ \ \ (3)\\\\ln(0.025)=ln(e^{-2CL'})=-2CL'\ \ \ \ (4)[/tex]

Next, you divide the equation (3) into (4), and finally, you solve for L':

[tex]\frac{ln(0.050)}{ln(0.025)}=\frac{-2CL}{-2CL'}=\frac{L}{L'}\\\\0.812=\frac{L}{L'}\\\\L'=\frac{L}{0.812}=1.231L[/tex]

hence, when the trnasmission coeeficient has changes to a values of 0.025, the new width of the barrier L' is 1.231 L

A 1 900-kg pile driver is used to drive a steel I-beam into the ground. The pile driver falls 4.00 m before coming into contact with the top of the beam, and it drives the beam 15.8 cm farther into the ground before coming to rest. Using energy considerations, calculate the average force the beam exerts on the pile driver while the pile driver is brought to rest.

Answers

Answer:

471392.4 N

Explanation:

From the question,

Just before contact with the beam,

mgh = Fd.................... Equation 1

Where m = mass of the beam, g = acceleration due to gravity, h = height. F =  average Force on the beam, d = distance.

make f the subject of the equation

F = mgh/d................ Equation 2

Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m

Constant: g = 9.8 m/s²

Substitute into equation 2

F = 1900(4)(9.8)/0.158

F = 471392.4 N

You are at the controls of a particle accelerator, sending a beam of 2.10×107 m/s protons (mass m) at a gas target of an unknown element. Your detector tells you that some protons bounce straight back after a collision with one of the nuclei of the unknown element. All such protons rebound with a speed of 1.80×107 m/s. Assume that the initial speed of the target nucleus is negligible and the collision is elastic.
A) Find the mass of one nucleus of the unknown element.
B) What is the speed of the unknown nucleus immediately after such a collision?

Answers

Answer:

a

The mass is  [tex]m_2 =21.75*10^{-27} \ kg[/tex]

b

The velocity is  [tex]v_2 = 3.0*10^{6} m/s[/tex]

Explanation:

From the question we are told that

     The speed of the protons is  [tex]u_1 = 2.10*10^{7} m/s[/tex]

     The mass of the protons is  [tex]m[/tex]

     The speed of the rebounding protons are [tex]v_1 = -1.80 * 10^{7} \ m/s[/tex]

The negative sign shows that it is moving in the opposite direction

     

Now according to the law of energy conservation mass of one nucleus of the unknown element. is mathematically represented as

        [tex]m_2 = [\frac{u_1 -v_1}{u_1 + v_1} ] m_1[/tex]

Where [tex]m_1[/tex] is the mass of a single proton

          So substituting values

       [tex]m_2 = \frac{2.10 *10^{7} - (-1.80 *10^{7})} {(2.10 *10^7) + (-1.80 *10^{7})} m_1[/tex]

        [tex]m_2 =13 m_1[/tex]

The mass of on proton is  [tex]m_1 = 1.673 * 10^{-27} \ kg[/tex]

So     [tex]m_2 =13 ( 1.673 * 10^{-27} )[/tex]

        [tex]m_2 =21.75*10^{-27} \ kg[/tex]

Now according to the law of linear momentum conservation the speed of the unknown nucleus immediately after such a collision is mathematically evaluated as

      [tex]m_1 u_1 + m_2u_2 = m_1 v_1 + m_2v_2[/tex]

Now  [tex]u_2[/tex] because before collision the the nucleus was at rest

So

        [tex]m_1 u_1 = m_1 v_1 + m_2v_2[/tex]

=>    [tex]v_2 = \frac{m_1(u_1 -v_1)}{m_2}[/tex]

Recall that [tex]m_2 =13 m_1[/tex]

So

       [tex]v_2 = \frac{m_1(u_1 -v_1)}{13m_1}[/tex]

=>         [tex]v_2 = \frac{(u_1 -v_1)}{13}[/tex]

substituting values

              [tex]v_2 = \frac{( 2.10*10^{7} -(-1.80 *10^{7}))}{13}[/tex]

              [tex]v_2 = 3.0*10^{6} m/s[/tex]

   

A "swing" ride at a carnival consists of chairs that are swung in a circle by 19.8 m cables attached to a vertical rotating pole, as the drawing shows. Suppose the total mass of a chair and its occupant is 137 kg. (a) Determine the tension in the cable attached to the chair. (b) Find the speed of the chair.

Answers

Answer:

a)  T = 1342.6 cos θ, b)  v = 13.93 √(sin θ tan θ)

Explanation:

We can solve this problem using Newton's second law

Let's fix a reference system with a horizontal axis and the other vertical, therefore the only force to decompose is the tension, in these problems the most common is to measure the angle with respect to the vertical. Let's use trigonometry to find the components of the dispute

      cos θ = [tex]T_{y}[/tex] / T

      T_{y} = T cos tea

     sin θ = Tₓ / T

     Tₓ = T sin θ

let's write Newton's second law

axis and vertical

      T cos θ - W = 0

       T = mg / cos θ

let's calculate

      T = 137  9.8 cos θ

       T = 1342.6 cos θ

unfortunately there is no drawing or indication of the angle

Axis x Horizontal

       T sin θ = m a

acceleration is centripetal

        a = v² / R

        T sin θ = m v² / R

        v² = (g / cos θ) R sin θ

        v = √ (gR tan θ)

let's use trigonometry to find radius of gyration

          sin θ = R / L

          R = L sin θ

         v = √ (g L  sin θ tan θ)

let's calculate

         v = √(9.8 19.8 sin θ tant θ)

         v = 13.93 √(sin θ tan θ)

they do not give the angle for which the calculation cannot be finished

What is the gravitational force between mars and Phobos

Answers

Answer:

[tex]F=5.16\times 10^{15}\ N[/tex]

Explanation:

We have,

Mass of Mars is, [tex]m_M=6.42\times 10^{23}\ kg[/tex]

Mass of its moon Phobos, [tex]m_P=1.06\times 10^{16}\ kg[/tex]

Distance between Mars and Phobos, d = 9378 km

It is required to find the gravitational force between Mars and Phobos. The force between two masses is given by

[tex]F=G\dfrac{m_Mm_P}{d^2}[/tex]

Plugging all values, we get :

[tex]F=6.67\times 10^{-11}\times \dfrac{6.42\times 10^{23}\times 1.06\times 10^{16}}{(9378\times 10^3)^2}\\\\F=5.16\times 10^{15}\ N[/tex]

So, the gravitational force is [tex]5.16\times 10^{15}\ N[/tex].

High speed stroboscopic photographs show that the head of a 244 g golf club is traveling at 57.6 m/s just before it strikes a 45.2 g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 39.9 m/s. Find the speed of the golf ball just after impact.

Answers

Answer:

The speed will be "1.06 m/s".

Explanation:

The given values are:

Momentum,

m1 = 244 g

m2 = 45.2 g

On applying momentum conservation ,

Let v2 become the final golf's speed.  

From Momentum Conservation

⇒  [tex]Total \ initial \ momentum = Total \ final \ momentum[/tex]

⇒  [tex]m1\times u1 + m2\times u2 = m1\times v1 + m2\times v2[/tex]

On putting the estimated values, we get

⇒  [tex]0.244\times 57.6+0=0.244\times 39.9+45.2\times v2[/tex]

⇒  [tex]57.844+0=9.7356+45.2\times v2[/tex]

⇒  [tex]48.1084=45.2\times v2[/tex]

⇒  [tex]v2=\frac{48.1084}{45.2}[/tex]

⇒  [tex]v2=1.06 \ m/s[/tex]

A moving walkway has a speed of 0.5 m/s to the east. A stationary observer
sees a man walking on the walkway with a velocity of 0.8 m/s to the east.
What is the man's velocity relative to the moving walkway?

Answers

Answer: 0.3 m/sec

Explanation:

Vrel = (Vs-Vm) = (0.8-0.5) = 0.3 m/sec

Answer:

0.3 m/s east

Explanation:

Electromagnetic waves propagate much differently in conductors than they do in dielectrics or in vacuum. If the resistivity of the conductor is sufficiently low (that is, if it is a sufficiently good conductor), the oscillating electric field of the wave gives rise to an oscillating conduction current that is much larger than the displacement current. In this case, the wave equation for an electric field:________

Answers

Answer:

Del(ρ/ε₀) - (Del)²E = -dμ₀J/dt

Explanation:

From Maxwell's fourth equation

Curl B = μ₀J + μ₀ε₀dE/dt (1) where the second term is the displacement current.

If the oscillation conduction current in the conductor is much larger than the displacement current then, the displacement current goes to zero. So we have

Curl B = μ₀J  (2)(since μ₀ε₀dE/dt = 0)

From maxwell's third equation

Curl E = -dB/dt  (3)  

taking curl of the above from the left

Curl(Curl E) = Curl(-dB/dt)

Curl(Curl E) = (-d(CurlB)/dt)  (4)

Substituting for Curl B into (4), we have

Curl(Curl E) = -dμ₀J/dt

Del(DivE) - (Del)²E = -dμ₀J/dt    (5)

From Maxwell's first equation,

DivE = ρ/ε₀

Substituting this into (5), we have

Del(ρ/ε₀) - (Del)²E = -dμ₀J/dt

Which of the following statements about this system of lumps must be true? A. The momentum of the system is conserved during the collision. B. The kinetic energy of the system is conserved during the collision. C. The two masses lose all their kinetic energy during the collision. D. The velocity of the center of mass of the system is the same after the collision as it was before the collisio

Answers

Answer:

option A.

Explanation:

Since the two lumps collide together, it is an inelastic collision.  An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. Part of the kinetic energy is changed to some other form of energy in the collision

Momentum is conserved in inelastic collisions. This means the correct option is option A.

A thin plastic rod of length 2.6 m is rubbed all over with wool, and acquires a charge of 98 nC, distributed uniformly over its surface. Calculate the magnitude of the electric field due to the rod at a location 13 cm from the midpoint of the rod. Do the calculation two ways, first using the exact formula for a rod of any length, and second using the approximate formula for a long rod.

Answers

Answer:

By exact formula

5076.59N/C

And by approximation formula

5218.93N/C

Explanation:

We are given that

Length of rod,L=2.6 m

Charge,q=98nC=[tex]98\times 10^{-9} C[/tex]

[tex]1nC=10^{-9} C[/tex]

a=13 cm=0.13 m

1 m=100 cm

By exact formula

The magnitude of  the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{kq}{a}\times \frac{1}{\sqrt{a^2+\frac{L^2}{4}}}[/tex]

Where k=[tex]9\times 10^9[/tex]

Using the formula

The magnitude of  the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{9\times 10^9\times 98\times 10^{-9}}{0.13}\times \frac{1}{\sqrt{(0.13)^2+\frac{(2.6)^2}{4}}}=5076.59N/C[/tex]

In approximation formula

a<<L

[tex]a^2+(\frac{L}{2})^2=\frac{L^2}{4}[/tex]

Therefore,the magnitude of  the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{kq}{a}\times \frac{1}{\sqrt{\frac{L^2}{4}}}[/tex]

The magnitude of  the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{9\times 10^9\times 98\times 10^{-9}}{0.13}\times \frac{1}{\sqrt{\frac{(2.6)^2}{4}}}=5218.93N/C[/tex]

A girl walks South at 2.7 m/s. What is the y component of her velocity​

Answers

Answer:

-2.7m/s

Explanation:

...............

A 60-turn coil has a diameter of 13 cm. The coil is placed in a spatially uniform magnetic field of magnitude 0.60 T so that the face of the coil and the magnetic field are perpendicular. Find the magnitude of the emf induced in the coil (in V) if the magnetic field is reduced to zero uniformly in the following times.
(a) 0.80 S 0.5973V
(b) 8.0 s 5.973 Xv
(c) 70 S 6.838- 3 v

Answers

Answer:

a) 0.5985 V

b) 0.05985 V

c) 0.00684 V

Explanation:

Given that

Number of turn in the coil, N = 60 turns

Magnetic field of the coil, B = 0.6 T

Diameter of the coil, d = 0.13 m

If area is given as, πd²/4, then

A = π * 0.13² * 1/4

A = 0.0133 m²

The induced emf, ε = -N(dΦ*m) /dt

Note, Φm = BA

Substituting for Φ, we have

ε = -NBA/t.

Now, we substitute for numbers in the equation

ε = -(60 * 0.6 * 0.0133)/0.8

ε = 0.4788/0.8

ε = 0.5985 V

at 8s,

ε = -(60 * 0.6 * 0.0132)/8

ε = 0.4788/8

ε = 0.05985 V

at 70s

ε = -(60 * 0.6 * 0.0132)/70

ε = 0.4788/70

ε = 0.00684 V

A laser beam is incident from the air at an angle of 30.0° to the vertical onto a solution of Karo syrup in water. If the beam is refracted to 19.24° to the vertical, what is the index of refraction of the syrup solution?

Answers

Answer:

Index of Refraction = 1.52

Explanation:

The index of refraction or the refractive index is given as:

Index of Refraction = Sin i/Sin r

where,

i = angle of incidence

r = angle of refraction

In this case of karo syrup, we have the following data:

i = angle of incidence  = 30°

r = angle of refraction = 19.24°

Therefore, substituting these values in the equation, we get:

Index of Refraction = Sin 30°/Sin 19.24°

Index of Refraction = 0.5/0.3295

Index of Refraction = 1.52

Hence, the refractive index or the index of refraction of the Karo Syrup is found to be 1.52.

There is a known potential difference between two charged plates of 12000 Volts. An object with a charge of 6.5 x 10-6 C charge and a mass of 0.02 kg is placed next to the positive plate. How fast will it be traveling when it gets to the negative plate

Answers

Answer:

1.97 m/s.

Explanation:

From the question,

Using the law of conservation of energy,

The energy stored in the charged plate = Kinetic energy of the mass

1/2(qV) = 1/2mv².......................... Equation 1

Where q = charge, V = voltage, m = mass, v = velocity.

make v the subject of the equation

v = √(qV/m)......................... Equation 2

Given: q = 6.5×10⁻⁶ C, V = 12000 Volts, m = 0.02 kg

Substitute these values into equation 2

v = √(6.5×10⁻⁶×12000 /0.02)

v = √3.9

v = 1.97 m/s.

A car starting from rest, travels 0.40 km in 11.0 s. What is the
magnitude of its constant acceleration?​

Answers

Answer:

6.61 m/s²

Explanation:

Given:

Δx = 0.40 km = 400 m

v₀ = 0 m/s

t = 11.0 s

Find: a

Δx = v₀ t + ½ at²

400 m = (0 m/s) (11.0 s) + ½ a (11.0 s)²

a = 6.61 m/s²

When a star has fused most of its hydrogen and begins to collapse inward, it becomes a

Answers

Red giant. The core collapses inwards increasing the heat and pressure, pushing the star outwards again.
It becomes a black hole or in some cases a white dwarf


A long, East-West-oriented power cable carrying an
unknown current I is at a height of 8 m above the Earth's
surface. If the magnetic flux density recorded by a magnetic-
field meter placed at the surface is 15 ut when the current is
flowing through the cable and 20 ut when the current is zero,
what is the magnitude of 1?​

Answers

Answer:

200A

Explanation:

Given that

the distance between earth surface and power cable d = 8m

when the current is flowing through cable , the magnitude flux density at the surface is 15μT

when the current flow throught is zero the magnitude flux density at the surface is 20μT

The change in flux density due to the current flowing in the power cable is

B = 20μT - 15μT

B =5μT -----(1)

The expression of magnitude flux density produced by the current carrying cable is

[tex]B=\frac{\mu_0I}{2\pi d}[/tex]-----(2)

Substitute the value of flux density

B from eqn 1 and eqn 2

[tex]\frac{\mu_0I}{2\pi d}=5\times 10^-^6\\\\\frac{(4\pi \times 10^-^7)I}{2 \pi (8)} =5\times 10^-^6\\\\I=200A[/tex]

Therefore, the magnitude of current I is 200A

There has long been an interest in using the vast quantities of thermal energy in the oceans to run heat engines. A heat engine needs a temperature difference, a hot side and a cold side. Conveniently, the ocean surface waters are warmer than the deep ocean waters. Suppose you build a floating power plant in the tropics where the surface water temperature is ~ 35.0 C. This would be the hot reservoir of the engine. For the cold reservoir, water would be pumped up from the ocean bottom where it is always ~ 5.00 C.
What is the maximum possible efficiency of such a power plant?

Answers

Answer:

Explanation:

The maximum efficient power plant will be the plant based on carnot cycle whose efficiency is given by the following formula

Efficiency = (T₁ - T₂)  / T₁

T₁ is temperature of hot reservoir and T₂ is temperature of cold reservoir.

Putting the given values

efficiency of power plant = (35 - 5) / (273 + 35 )

= 30 / 308

= .097

= 9.7 %

A and B Two vectors are in the xy plane. If 4= 3m , |B|= 4m , and |A– B= 2 m find
a) The angle between B and A
b) The unit vector in the direction of (4× B)​

Answers

Answer:

Explanation:

a)

A = 3m , B = 4m .

(A-B)² = A² + B² - 2ABcosθ where θ is angle between A and B.

4 = 9 + 16 - 2. 3.4 cosθ

cosθ = .875

θ = 29° .

b ) Unit vector in the direction of A X B will be k vector because A and B are in X-Y plane and A X B lies perpendicular to both A and B .

A 1500 kg car travelling at 25 m/s collides with a 2500 kg van which had
stopped at a traffic light. As a result of the collision the two vehicles become
entangled. Which of the following pairs given in the table below shows the
initial speed the entangled mass will move and the type of collision​

Answers

I’m not sure I think if you google it it should pop up or go on quizlet sorry

A venturi meter used to measure flow speed in the pipe. Derive an expression for the flow speed "H1" interns of the crossectional areas "A1" and "A2" and the difference in height "h" of the liquid levels in the two vertical tubes ?

Answers

Answer:

v₁ = √[ 2gh / ((A₁ / A₂)² − 1) ]

Explanation:

Use Bernoulli's equation:

P₁ + ½ ρ v₁² + ρgz₁ = P₂ + ½ ρ v₂² + ρgz₂

Since there's no elevation change between points 1 and 2, z₁ = z₂.

P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²

Assuming incompressible fluid, the volumetric flow rate is the same at points 1 and 2.

Q₁ = Q₂

v₁ A₁ = v₂ A₂

v₂ = v₁ A₁ / A₂

Substituting:

P₁ + ½ ρ v₁² = P₂ + ½ ρ (v₁ A₁ / A₂)²

P₁ + ½ ρ v₁² = P₂ + ½ ρ v₁² (A₁ / A₂)²

P₁ − P₂ = ½ ρ v₁² (A₁ / A₂)² − ½ ρ v₁²

P₁ − P₂ = ½ ρ v₁² ((A₁ / A₂)² − 1)

v₁² = 2 (P₁ − P₂) / (ρ ((A₁ / A₂)² − 1))

v₁² = 2 (ρgh) / (ρ ((A₁ / A₂)² − 1))

v₁² = 2gh / ((A₁ / A₂)² − 1)

v₁ = √[ 2gh / ((A₁ / A₂)² − 1) ]

Who first used the word atom to describe the smallest unit

Answers

Answer: It was Democritus, in fact, who first used the word atomos to describe the smallest possible particles of matter.

Explanation: hope this helped

Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of these seeds can be determined with a high-speed camera. In an experiment on one type of plant, seeds are projected at 20 cm above ground level with initial speeds between 2.3 m/s and 4.6 m/s. The launch angle is measured from the horizontal, with +90∘ corresponding to an initial velocity straight up and -90∘ straight down. The experiment is designed so that the seeds move no more than 0.20 mm between photographic frames. What minimum frame rate for the high-speed camera is needed to achieve this?

a. 250 frames/s
b. 2500 frames/s
c. 25,000 frames/s
d. 250,000 frames/s.

Answers

Answer:

c. 25,000 frames/s

Explanation:

For computing the minimum frame rate for high speed first we have to determine the time by applying the following equation

[tex]t = \frac{d}{s}[/tex]

[tex]= \frac{0.2\ mm}{4.6\ m/s }[/tex]

[tex]= \frac{0.2 \times 10 ^{-3}}{4.6\ m/s }[/tex]

[tex]= 4.347 \times 10^{-5} sec[/tex]

Now the frame rate is

[tex]Frame\ rate = \frac{1}{t}[/tex]

[tex]= \frac{1}{4.347 \times 10^{-5} sec}[/tex]

= 23,000 frame per sec

≈ 25,000 frame per sec

First we have find the time then after finding out the time we calculate the frame time by applying the above formula so that the minimum frame rate could come

An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150 m/s^{2} as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast is it going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?

Answers

Answer:

a) [tex]t \approx 9.879\,s[/tex], b) [tex]v = 20.518\,\frac{m}{s}[/tex], c) [tex]t = 16.368\,s[/tex], d) [tex]v = 19.545\,\frac{m}{s}[/tex]

Explanation:

a) Since train is only translating in a straight line and experimenting a constant deceleration throughout the station, whose length is 210 meters. The time required for the nose of the train to reach the end of the station can be found with the help of the following motion formula:

[tex]210\,m = \left(22\,\frac{m}{s}\right) \cdot t + \frac{1}{2}\cdot \left(-0.150\,\frac{m}{s^{2}} \right) \cdot t^{2}[/tex]

The following second-order polynomial needs to be solved:

[tex]-0.075\cdot t^{2} + 22\cdot t - 210 = 0[/tex]

Whose roots are presented herein:

[tex]t_{1}\approx 283.455\,s[/tex] and [tex]t_{2} \approx 9.879\,s[/tex]

Both solutions are physically reasonable, although second roots describes better the braking process of the train.

b) The speed of the nose leaving the station is given by this expression:

[tex]v = 22\,\frac{m}{s} + \left(-0.150\,\frac{m}{s^{2}}\right)\cdot (9.879\,s)[/tex]

[tex]v = 20.518\,\frac{m}{s}[/tex]

c) First, it is required to calculate the time when nose of the train reaches a distance of 130 meters.

[tex]130\,m = \left(22\,\frac{m}{s}\right) \cdot t + \frac{1}{2}\cdot \left(-0.150\,\frac{m}{s^{2}} \right) \cdot t^{2}[/tex]

[tex]-0.075\cdot t^{2} + 22\cdot t - 130 = 0[/tex]

Roots of the second-order polynomial are:

[tex]t_{1} \approx 287.300\,s[/tex] and [tex]t_{2} \approx 6.033\,s[/tex]

Both solutions are physically reasonable, although second roots describes better the braking process of the train. Now, the speed experimented by the train at this instant is:

[tex]v = 22\,\frac{m}{s} + \left(-0.150\,\frac{m}{s^{2}}\right)\cdot (6.033\,s)[/tex]

[tex]v = 21.095\,\frac{m}{s}[/tex]

The distance traveled by the end of the train throughout station is modelled after the following equation:

[tex]210\,m = \left(21.095\,\frac{m}{s}\right) \cdot t + \frac{1}{2}\cdot \left(-0.150\,\frac{m}{s^{2}} \right) \cdot t^{2}[/tex]

[tex]-0.075\cdot t^{2} + 21.095\cdot t - 210 = 0[/tex]

Roots of the second-order polynomial are:

[tex]t_{1} \approx 270.932\,s[/tex] and [tex]t_{2} \approx 10.335\,s[/tex]

Both solutions are physically reasonable, although second roots describes better the braking process of the train. The instant when the end of the train leaves the station is:

[tex]t = 6.033\,s + 10.335\,s[/tex]

[tex]t = 16.368\,s[/tex]

d) The velocity experimented by the end of the train is:

[tex]v = 21.095\,\frac{m}{s} + \left(-0.150\,\frac{m}{s^{2}} \right)\cdot (10.335\,s)[/tex]

[tex]v = 19.545\,\frac{m}{s}[/tex]

The negative sign indicates that the train comes to a stop before entering the station. Therefore, the nose of the train is not in the station at all. The negative sign indicates that the train is moving in the opposite direction of its initial velocity. The end of the train leaves the station after approximately 14.98 seconds. The velocity of the end of the train as it leaves the station is approximately 19.753 m/s.

(a) Using the equation :

v² = u² + 2as

0 = (22.0)² + 2 × (-0.150 ) × s

s = -(22.0 )^2 / (2 × -0.150)

s = 325.3 m

The negative sign indicates that the train comes to a stop before entering the station. Therefore, the nose of the train is not in the station at all.

(b) The velocity of the train when the nose leaves the station is given by:

v = u + at

v = 22.0 + (-0.150 ) × 210

v ≈ 22.0 - 31.5

v ≈ -9.5 m/s

The negative sign indicates that the train is moving in the opposite direction of its initial velocity.

(c)

s = ut + (1/2)at²

210= 22.0 × t + (1/2) × (-0.150) × t²

0.075 t² - 22.0 t + 210 = 0

we find two solutions for t: t ≈ 14.98 s and t ≈ 3.01 s.

The end of the train leaves the station after approximately 14.98 seconds.

(d) The velocity of the end of the train as it leaves the station is given by:

v = u + at

v = 22.0 + (-0.150) × 14.98

v = 22.0 - 2.247

v = 19.753 m/s

So, the velocity of the end of the train as it leaves the station is approximately 19.753 m/s.

To know more about the velocity:

https://brainly.com/question/17127206

#SPJ6

Two mirrors are at right angles to one another. A light ray is incident on the first at an angle of 30° with respect to the normal to the surface. What is the angle of reflection from the second surface?

Answers

Answer:

reflected angle - secod mirror = 60°

Explanation:

I attached an image with the solution to this problem below.

In the solution the reflection law, incident angle = reflected angle, is used. Furthermore some trigonometric relation is used.

You can notice in the image that the angle of reflection in the second mirror is 60°

Other Questions
Find the value of x in this polygon No trecho "Tirei do bolso uma nota de cinquenta lhe ofereci pela sua franqueza. " o termo grifado introduz uma conjuno:A) aditiva B) adversativaC) alternativaD) explicativaOBS: o que est grifado a letra E, e por favor botem uma explicao alm da resposta. I need help with this pls Solve for f.7f 9 = 9 4ff = Dans les phrases suivantes, donne la nature des mots souligns : Where does the body absorb most nutrients? The expression (2x + 1)4 is expanded and simplified. Which monomial listed below is a term in the result? 8x3 12x3 32x3 48x3 Sentence combining ( combine it into one sentence) A. My best friend was sitting on a train. C. The train was bound for Paris. B. I was sitting on a train. D. This is when the nightmare began. C. The train was in Frankfurt. distinguish between random sampling and systematic sampling with example . Pls Fastt How do the details in this timeline support the authors'purpose?ation ofcoloniesns, noabolishedtoThe details about the shift of power in France helppersuade readers that France was important to the sugarindustry.The details about the changing laws in France help informreaders that Napoleon wanted to produce sugar cheaplyby using enslaved people.The details about the French Revolution help informreaders about the process of executing enemies.The details about Marie Antoinette help persuade readersthat the French royalty were not well liked.cutedpniesorth Which of the following is not a reason that power plants are unable to achieve 100 percent efficiency? A. The amount of work obtained from a process never has work needing to go into it. B. Not all energy is converted heat from chemical reactions into useful work. C. Entropy increases. D. Heat is often a waste product Zac invests $3500 at 8% p.a. simple interest for a period of time, to produce $210 interest. For how long did he invest the money?Please help me in the steps to finding the answer and also the solution. Thx Which describes a target cell? releases hormones into the blood produces a particular hormone recognizes a hormones chemical structure destroys hormones in the blood How does the Global War on Terror compare to past military conflicts, such asWorld War Il or Vietnam? The table lists some organelles and functions. Only one pair is correctly matched.OrganelleLysosomeVacuoleMitochondrionRibosomeFunctions of OrganellesFunctionStores water and waste materialsBreaks down sugarsBreaks down waste materials and debrisProduces proteins for the cellWhich organelle in the table is correctly matched with its function?lysosomevacuolemitochondrionribosome Bramble's Bakery makes a variety of home-style cookies for upscale restaurants in the Atlanta metropolitan area. The company's best-selling cookie is the double chocolate almond supreme. Bramble's recipe requires 10 ounces of a commercial cookie mix, 5 ounces of milk chocolate, and 1 ounce of almonds per pound of cookies. The standard direct materials costs are $0.80 per pound of cookie mix, $6 per pound of milk chocolate, and $18 per pound of almonds. Each pound of cookies requires 1 minute of direct labor in the mixing department and 7 minutes of direct labor in the baking department. The standard labor rates in those departments are $12.70 per direct labor hour (DLH) and $19 per DLH, respectively. Variable overhead is applied at a rate of $35.80 per DLH; fixed overhead is applied at a rate of $60 per DLH.Calculate the standard cost for a pound of Bramble's Bakery double chocolate almond supreme cookies. On January 1, 2013, US Manufacturing purchased a machine for $ 830,000. The company expected the machine to remain useful for ten years and to have a residual value of $ 60,000. US Manufacturing uses the straight-line method to depreciate its machinery. US Manufacturing used the machine for six years and sold it on January 1, 2018, for $ 300,000.1. Compute accumulated depreciation on machine on January 1, 2018.2. Record the sale of the machinery on January 1,2018. Which expression is equivalent to How can you make it safer to exercise on a hot day?A. Do not exercise between 11 a.m. and 5 p.m., the hottest hours ofthe day.B. Wear loose-fitting clothes that allow sweat to evaporate.C. Drink water before, during, and after a workout. Drink water atleast every 20 minutes while exercising.D. All of the above. Help me plz ASAP!! Will mark Brainliest if you figure it out! 10 points!