A human expedition lands on an alien moon. One of the explorers is able to jump a maximum distance of 16.0 m with an initial speed of 2.90 m/s. Find the gravitational acceleration on the surface of the alien moon. Assume the planet has a negligible atmosphere. (Enter the magnitude in m/s2.)

Answers

Answer 1

Answer:

Gravitational acceleration (g) = 0.4205 m/s²

Explanation:

Given:

Distance (R) = 20 m

Initial speed (u) = 2.90 m/s

Find:

Gravitational acceleration (g)

Computation:

⇒ Distance (R) = [Initial speed (u)]²/ Gravitational acceleration (g)

⇒ Gravitational acceleration (g) =  [Initial speed (u)]² / Distance (R)

⇒ Gravitational acceleration (g) = 2.90 ² / 20

⇒ Gravitational acceleration (g) = 8.41 / 20

Gravitational acceleration (g) = 0.4205 m/s²


Related Questions

A boat crosses a 200m wide river at 3m/s, north relative to water. The river flows at 1m/s as shown. What is the velocity of the boat as observed by a stationary observer on the river back from the boat departed?

Answers

Answer:

The resultant velocity = 3.16 m/s

Explanation:

Since the boat is moving North of the direction of the riverflow, the river would either be flowing westward or Eastward. The two motions form a right angle triangle with the resultant velocity being the hypotenuse of the traingle.

The resultant velocity will be given as ;

R² = B² + r²

Where B is the velocity of the boat and r is the velocity of the river

R² = 3² + 1²

R² = 10

R = √10 = 3.16 m/s

Therefore, the resultant velocity = 3.16 m/s

A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by 1.8 cm. Voltage applied at the two ends is 5 V. A pulse arrives at the collection point at 0.608 ms, and the separation of the pulse is 180 sec. Calculate mobility and diffusion coefficient for minority carriers. Verify it from the Einstein relation.

Answers

Answer:

Mobility of the minority carriers, [tex]\mu_{n} =1184.21 cm^{2} /V-sec[/tex]

Diffusion coefficient for minority carriers,[tex]D_{n} = 29.20 cm^2 /s[/tex]

Verified from Einstein relation as  [tex]\frac{D_{n} }{\mu_{n} } = 25 mV[/tex]

Explanation:

Length of sample, [tex]l_{s} = 2 cm[/tex]

Separation between the two probes, L = 1.8 cm

Drift time, [tex]t_{d} = 0.608 ms[/tex]

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), [tex]\mu_{n} = \frac{V_{d} }{E}[/tex]

Where the drift velocity, [tex]V_{d} = \frac{L}{t_{d} }[/tex]

[tex]V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s[/tex]

and the Electric field strength, [tex]E = \frac{V}{l_{s} }[/tex]

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

[tex]\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec[/tex]

The electron diffusion coefficient, [tex]D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }[/tex]

[tex]\triangle x = (\triangle t )V_{d}[/tex], where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

[tex]\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3} }\\\triangle x =0.533 cm[/tex]

[tex]D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s[/tex]

For the Einstein equation to be satisfied, [tex]\frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V[/tex]

[tex]\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV[/tex]

Verified.

A television weighs 8.50 pounds. How many grams is this? (Hint: You need to

use two unit conversion fractions. 1 pound equals about 0.454 kg.)

Answers

Answer:

3859 grams

Explanation:

Given: Weight of a television = 8.50 pounds

To find: Weight of a television in grams

Solution:

1 pound = 0.454 kg and 1 kg = 1000 g

So,

1 pound = 0.454 × 1000 = 454 grams

8.50 pounds = 8.50 × 454 = 3859 grams

Therefore,

Weight of television in grams = 3859 grams

You are working in a biology lab and learning to use a new ultracentrifuge for blood ts. The specifications for the centrifuge say that a red blood cell rotating in the ultracentrifuge moves at 470 m/s and has a radial acceleration of 150,000 g's (that is, 150,000 times 9.8 m/s2). The radius of the centrifuge is 0.15 m. You wonder if this claim is correct.
What is the radial acceleration of the ultra-centrifuge using calculations ?

Answers

Answer:

The radial acceleration is  [tex]a_r = 1472667 \ m/s^2[/tex]

Explanation:

From the question we are told that

      The velocity of the red blood cell is  [tex]v_r = 470 \ m/s[/tex]

       The radial acceleration of the red blood cell is [tex]a_r = 150000g = 150000*9.8 = 1470000 \ m/s^2[/tex]

       The radius of the centrifuge is  [tex]r = 0.15 \ m[/tex]

Generally radial acceleration is  mathematically represented as

      [tex]a_r = \frac{v^2}{r}[/tex]

substituting values

     [tex]a_r = \frac{470^2}{0.15}[/tex]

     [tex]a_r = 1472667 \ m/s^2[/tex]

Two fledglings leave a nest which is 2.50 m off the ground. One drops from rest and then 0.10 s later the second charges out of the nest with a velocity with horizontal and
downward components of 1.00 and 1.50 m/s, respectively.
1. Which fledgling hits the ground first (first or second)?
2. With what speed, in m/s, does the first fledgling hit the ground?
3. With what speed, in m/s, does the second fledgling hit the ground?
4. Which fledgling travels the greater displacement?
5. How far does a parent bird have to travel on the ground between the two fledglings, in m, to make sure they are alright?

Answers

t Answer:

1) the time of the pigeon 1 is less, so it comes first

2) v = - 6,997 m / s ,  3)     v = 10.15 m / s ,

4) the displacement of the second point in greater

5)     x = 0.883 m

Explanation:

For this exercise we will use the kinematics equations

1) ask which chick reaches the ground first

we calculate for the first chick that has zero initial velocity

          y = y₀ + v₀ t - ½ g t²

          0 = yo - ½ g t²

          t = √ 2 y₀ / g

let's calculate

          t = √ (2 2.50 / 9.8)

          t = 0.714 s

We calculate the time it takes for the second chick that has velocity v = (1 i ^ - 1.5 j⁾ m / s

           y = y₀ + v₀t - ½ g t²

           0 = 2.5 - 1.5 t - ½ 9.8 t²

           4.9 t² + 1.5 t - 2.5 = 0

            t² + 0.306 t - 0.510 = 0

we solve the quadratic equation

            t = [0.306 ± √ (0.306² - 4 (-0.510))] / 2

            t = [0.306 ± 1.46] / 2

The results are

            t₁ = -0.577 s

            t₂ = 0.883 m / s

we take positive time as correct

the time of the pigeon 1 is less, so it comes first

2) the speed of the first chick is

              v = v₀ - g t

         

we can see that

              v = -gt

              v = - 9.8 0.714

              v = - 6,997 m / s

the negative sign indicates that the speed is down

3) the speed of the other bird is

              v = -1.5 - 9.8 0.883

               v = 10.15 m / s

4) which chick has the greatest displacement. The first point falls vertically and its displacement is y₀

The second point describes a parabola and its displacement is

           d = √ (x² + y₀²)

therefore we see that the displacement of the second point in greater

5) calculate the horizontal displacement of the second point

           x = vx t

           x = 1 0.883

           x = 0.883 m

The dial of a scale looks like this: 00.0kg. A physicist placed a spring on it. The dial read 00.6kg. He then placed a metal chain on the scale, it read 02.1kg. The physicist, then decided to test Einstein’s equation, and compressed the spring and tied it with the chain and placed it on the scale. It read 02.7kg. Which of the following conclusions is the most likely the physicist will come to?

a. Einstein's equation has an error
b. The scale is broken
c. Compressing the spring didn't add energy
d. The scale's resolution is too low to read the change in mass

Answers

Answer:

d. The scale's resolution is too low to read the change in mass

Explanation:

If we want to find the change in energy of the spring, we will have to use the Hooke's Law. Hooke's Law states that:

F = kx

since,

w = Fd

dw = Fdx

integrating and using value of F, we get:

ΔE = (0.5)kx²

where,

ΔE = Energy added to spring

k = spring constant

x = displacement

The spring constant is typically in range of 4900 to 29400 N/m.

So if we take the extreme case of 29400 N/m and lets say we assume an unusually, extreme case of 1 m compression, we get the value of energy added to be:

ΔE = (0.5)(29400 N/m)(1 m)²

ΔE = 1.47 x 10⁴ J

Now, if we convert this energy to mass from Einstein's equation, we get:

ΔE = Δmc²

Δm = ΔE/c²

Δm = (1.47 x 10⁴ J)/(3 x 10⁸ m/s)²

Δm =  4.9 x 10⁻¹³ kg

As, you can see from the answer that even for the most extreme cases the value of mass associated with the additional energy is of very low magnitude.

Since, the scale only gives the mass value upto 1 decimal place.

Thus, it can not determine such a small change. So, the correct option is:

d. The scale's resolution is too low to read the change in mass

A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the central plane 0.9 m above the ground and 1.7 m behind the front axle. When moving on the level at 90 km/h the brakes applied and it comes to a rest in a distance of 50 m.
Calculate the normal reactions at the front and rear wheels during the braking period and the least coefficient of friction required between the tyres and the road. (Assume g = 10 m/s2)​

Answers

Answer:

normal reaction, front: 11,175 Nnormal reaction, rear: 6,825 Nminimum coefficient of friction: 0.625

Explanation:

The speed in meters per second is ...

  (90 km/h)(1000 m/km)(1 h/(3600 s)) = 25 m/s

The braking acceleration can be found from ...

  a = v²/(2d) = (25 m/s)²/(2×50 m) = 6.25 m/s²

Then the braking force is ...

  F = Ma = (1800 kg)(6.25 m/s²) = 11,250 N

The torque on the center of gravity is ...

  T = (11,250 N)(0.90 m) = 10,125 N·m

__

If we let x and y represent the normal forces on the front and rear wheels, respectively, then we have ...

  x + y = (10 m/s²)(1800 kg) = 18000 . . . . . newtons

  1.7x -1.3y = 10,125 . . . . . . . . . . . . . . . . . . . newton-meters

The latter equation balances the torque due to the wheel normal forces with the torque due to braking forces.

Multiplying the first equation by 1.3 and adding that to the second, we have ...

  3.0x = (1.3)(18,000) + 10,125

  x = 33,525/3 = 11,175 . . . . . . . . . . . newtons normal force on front tyres

  y = 18000 -11175 = 6,825 . . . . . . . .newtons normal force on back tyres

The least coefficient of friction is the ratio of horizontal to vertical acceleration, 6.25/10 = 0.625.

A substance that produces H+ ions in solution is a.

A)soap

B)acid

C)salt

D)base

Answers

The answer is D)base

Whale sharks swim forward while ascending or descending. They swim along a straight-line path at a shallow angle as they move from the surface to deep water or from the depths to the surface. In one recorded dive, a shark started 50 m below the surface and swam at 0.85 m/s along a path tipped at a 13° angle above the horizontal until reaching the surface.

Required:
a. What was the horizontal distance between the shark's starting and ending positions?
b. What was the total distance that the shark swam?
c. How much time did this motion take?

Answers

Answer:

a)217m

b)222m

c)261s  

Explanation:

Considering the figure in the attachment

depth 'h'=50m

speed 'v'=0.85m/s

angle 'θ'=13°

a) we have

[tex]\frac{h}{x}[/tex]=tanθ

x = h / tanθ => 50/tan13°

x=216.57≈217m

b)we have

[tex]\frac{h}{d}[/tex]=sinθ

d=h / sinθ => 50 / sin13°

d=222.27≈222m

c)Time needed = d / v = 222/0.85

                          261.18≈261s

Based on the information in the table, which two elements are most likely in the same group, and why?

A table with 5 columns and 5 rows labeled facts about 4 elements. The first column labeled element has entries bismuth (B i), nitrogen (N), oxygen (O), sodium (N a), thallium (T l). The second column labeled atomic mass (a m u) has entries 209, 14, 16, 23, 204. The third column labeled total electrons has entries 83, 7, 8, 11, 81. The fourth column labeled valence electrons has entries 5, 5, 6, 1, 3. The fifth column labeled year isolated has entries 1753, 1772, 1772, 1807, 1861.

bismuth and thallium, because their atomic masses are very similar
nitrogen and oxygen, because they were both first isolated in the same year
sodium and thallium, because their names both end in the same suffix: -ium
bismuth and nitrogen, because they have the same number of valence electrons

Answers

Answer: bismuth and nitrogen, because they have the same number of valence electrons

Explanation:

Elements are distributed in groups and periods in a periodic table.

Elements that belong to same groups will show similar chemical properties because they have same number of valence electrons.

The number of valence electrons in Bismuth and nitrogen are 5 and thus thus they will show similar chemical properties and thus belong to the same group.

The atomic masses of elements in a group will differ drastically.

The group number has got nothing to be the isolation year.

Thus bismuth and nitrogen belong to same group because they have the same number of valence electrons

Answer:

D

Explanation:

i got it right in my test

Suppose the electric field in problems 2 was caused by a point charge. The test charge is moved to a distance twice as far from the charge. What is the magnitude of the force that the field exerts on the test charge now ?

Answers

Answer:

it is reduced four times.

Explanation:

By definition, the electric field is the force per unit charge created by a charge distribution.

If the charge creating the field is a point charge, the force exerted by it on a test charge, must obey Coulomb´s Law, so, it must be inversely proportional to the square of the distance between the charges.

So, if the distance increases twice, as the force is inversely proportional to the square of the distance, and the square of 2 is 4, this means that the magnitude of the force exerted on the test charge must be 4 times smaller.

Monochromatic light is incident on (and perpendicular to) two slits separated by 0.200 mm, which causes an interference pattern on a screen 613 cm away. The light has a wavelength of 656.3 nm. (a) What is the fraction of the maximum intensity at a distance of 0.600 cm from the central maximum of the interference pattern

Answers

Answer:

I = 0.636*Imax

Explanation:

(a) To find the fraction of the maximum intensity at a distance y from the central maximum you use the following formula:

[tex]I=I_{max}cos^2(\frac{\pi d}{\lambda L}y)[/tex]   (1)

I: intensity of light

Imax: maximum intensity of light

d: separation between slits = 0.200mm = 0.200 *10^-3 m

L: distance from the screen = 613cm = 0.613 m

y: distance to the central peak of the interference pattern

λ: wavelength of light = 656.3 nm = 656.3 *10^-9 m

You replace the values of all variables in the equation (1):

[tex]I=I_{max}cos^2(\frac{\pi (0.200*10^{-3}m)}{(656.3*10^{-9}m)(0.613m)}0.600m)\\\\I=I_{max}cos^2(937.06)=0.636I_{max}[/tex]

Hence, the fraction of the maximum intensity is I = 0.636*Imax

The speed of light changes when it goes from ethyl alcohol (n = 1.361) to carbon tetrachloride (n = 1.461). The ratio of the speed of light in carbon tetrachloride to the speed in ethyl alcohol is

Answers

Answer:

The ratio of the speed of light in carbon tetrachloride to the speed in ethyl alcohol is 0.93

Explanation:

The formula for the refractive index of a medium is given as:

n = c/v

where,

n = refractive index of the medium

c = speed of light in vacuum

v = speed of light in that medium

FOR CARBON TETRACHLORIDE:

n = n₁ = 1.461

v = v₁

Therefore,

1.461 = c/v₁  

v₁ = c/1.461     ----- equation (1)

FOR ETHYL ALCOHOL:

n = n₂ = 1.361

v = v₂

Therefore,

1.361 = c/v₂  

v₂ = c/1.361     ----- equation (2)

Now, dividing equation (1) by equation (2), we get:

v₁/v₂ = (c/1.461) / (c/1.361)

v₁/v₂ = 1.361/1.461

v₁/v₂ = 0.93

Hence, the ratio of the speed of light in carbon tetrachloride to the speed in ethyl alcohol is 0.93

-
is a side effect of tobacco use.
A. Lightheadedness
B. Irritability
C. Dizziness
D. All of the above
Please select the best answer from the choices provided.

Answers

Answer:

D. all of the above

Explanation:

Answer will be all of the above

The frames for a pair of eyeglasses have a radius of 2.14 cm at 20.0°C. Lenses with radius of 2.16 cm have to be inserted into these frames. To what temperature must the technician heat the frames to accommodate the lenses? The frames are made of a material whose thermal expansion coefficient is 1.30 10-4/°C.

Answers

Answer:

The technician must heat the frame to a temperature of T₂ = 0.0072°C

Explanation:

Change in one-dimension of an object upon heating is given by the following equation:

ΔL = α L ΔT

For the radius this equation can be re-written as follows:

ΔR = α R ΔT

where,

ΔR = Change in Radius =  2.16 cm - 2.14 cm = 0.02 cm

α = Thermal Expansion Coefficient = 1.3 x 10⁻⁴ /°C

R = Original Radius = 2.14 cm

ΔT = Change in Temperature = T₂ - 20°C

Therefore,

0.02 cm = (1.3 x 10⁻⁴ /°C)(2.14 cm)(T₂ - 20°C)

T₂ - 20°C = (0.02 cm)/(1.3 x 10⁻⁴ /°C)(2.14 cm)

T₂ = 0.0072°C + 20°C

T₂ = 20.0072°C

Consider the interference/diffraction pattern from a double-slit arrangement of slit separation d = 6.60 um and slit width a. The wavelength of the monochromatic light incident normally upon the slits is 2n = d/10 (in air). There is a filter (of negligible thickness) placed on slit 2, so that the magnitude of the EM wave emitted from it is half of that emitted from slit 1. The space between the slits and the screen is filled with water, whose index of refraction is n = 1.33 (you can take noir as 1.00).
(a) What is the wavelength 2 of the light in water?
(b) If a << 1, What is the phase difference between the waves from slits 1 and 2?
(c) For a << 2, Derive an expression for the intensity / as a function of O and other relevant parameters, including the intensity at the center of the screen (where 0 = 0).
(d) Now suppose a = d/3. Redo part (b) above. How many interference maxima are present within the central diffraction peak? (Do not count the "clipped" maxima, if any.) (4) — E -2 d E ) в /Б/ = 1/5 | TT

Answers

Answer:

(a) λ = 0.496 um (b) S =2π Δ d sinθ/ λ  (c) I =gI₀ (d) For the central diffraction peak, a total of 5 interference maxima are present or available.

Note: find an attached copy of a part of the solution to the given question below.

Explanation:

Solution

Recall that:

d = 6.6 um

λ₀ =d/10

λ₀ = 6.6 um

Now,

(a) We find the wavelength λ of the light in water.

Thus,

λ water = (λ₀ )/n

= 0.66/1.33

So,

λ water = λ = 0.496 um

(b) We find the phase difference between the waves from slit 1 and 2

Now,

if a <<d  and a<<λ

Then the path difference between the rays will be

Δ S₂N = Δ d sinθ

Thus, the phase difference becomes,

S = 2π Δ/λ is S= 2π Δ d sinθ/ λ

(c) The next step is to derive an expression for the intensity  I as function of O and other relevant parameters.

Now,

Let p be the point where these two rays interfere with each other.

Thus,

The electric field vector coming out from slot and and slot 2 is

E₁= E₀₁ cos (ks₁ p - wt) i

E₂ = E₀₂ cos (ks₂ p - wt) i

Note: Kindly find an attached copy of a part of the solution to the given question below.

The resistivity of a metal increases slightly with increased temperature. This can be expressed as rho=rho0[1+α(T−T0)], where T0 is a reference temperature, usually 20∘C, and α is the temperature coefficient of resistivity. Part A First find an expression for the current I through a wire of length L, cross-section area A, and temperature T when connected across the terminals of an ideal battery with terminal voltage ΔV. Then, because the change in resistance is small, use the binomial approximation to simplify your expression. Your final expression should have the temperature coefficient α in the numerator. Express your answer in terms of L, A, T, T0, ΔV, rho0, and α.

Answers

Answer:

I = ΔVA[1 - α (T₀ - T)]/Lρ₀

Explanation:

We have the following data:

ΔV = Battery Terminal Voltage

I = Current through wire

L = Length of wire

A = Cross-sectional area of wire

T = Temperature of wire, when connected across battery

T₀ = Reference temperature

ρ = Resistivity of wire at temperature T

ρ₀ = Resistivity of wire at reference temperature

α = Temperature Coefficient of Resistance

From OHM'S LAW we know that;

ΔV = IR

I = ΔV/R

but,  R = ρL/A   (For Wire)

Therefore,

I = ΔV/(ρL/A)

I = ΔVA/ρL

but,   ρ = ρ₀[1 + α (T₀ - T)]

Therefore,

I = ΔVA/Lρ₀[1 + α (T₀ - T)]

I = [ΔVA/Lρ₀] [1 + α (T₀ - T)]⁻¹

using Binomial Theorem:

(1 +x)⁻¹ = 1 - x + x² - x³ + ...

In case of [1 + α (T₀ - T)]⁻¹, x = α (T₀ - T).

Since, α generally has very low value. Thus, its higher powers can easily be neglected.

Therefore, using this Binomial Approximation, we can write:

[1 + α (T₀ - T)]⁻¹ = [1 - α (T₀ - T)]

Thus, the equation becomes:

I = ΔVA[1 - α (T₀ - T)]/Lρ₀

50 POINTS
What happens to kinetic energy of a moving object of the velocity decreases? (Look at photo multiple choice)

Answers

Answer:   A    Answers. Assuming that the terminal velocity doesn't change during the fall, then the kinetic energy would remain constant. However the terminal velocity decreases during the fall since the air becomes denser at lower altitudes.

Explanation:

What happens to the KE of an object when it slows down and heats up? - Quora. The kinetic energy goes down and the loss of the kinetic energy is through the production of heat energy. In real world this is due to friction, or an opposing force that decelerates the object, or a combination of both.

Answer:

Kinetic energy stays the same

a block (mass 0.6kg) is released from rest at point A at the top of a ramp inclined at 36.9 degress above the horizontal. The block moves a distance of 4m along the ramp to point b at the bottom of the ramp. How much work is done by gravity as the block goes from a to b

Answers

14.136 J as shown on the photo with two thought processes but overall same calculation

Convert 45m/s to mph. Choose the best answer to two significant figures.
101mph
45mph
200mph
24mph

Answers

Explanation:

45 m/s × (3.28 ft/m) × (1 mi / 5280 ft) × (3600 s/h) = 101 mph

This is actually 3 significant figures.  To write in 2 significant figures, you must use scientific notation:

1.0×10² mph

If the molar mass of helium is 4.0 g/mol and the molar mass of neon is 20.2 g/mol, then
a. All the atoms have exactly the same velocity.
b. All the atoms have the same average speed.
c.The average speed of the helium atoms is greater than the average speed of the neon atoms.
d. The average speed of the neon atoms is greater than the average speed of the helium atoms.
e. The atoms diffuse from high temperature to low temperature.

Answers

The answer you are looking for is E
Hope it helps

There is an old physics joke involving cows, and you will need to use its punchline to solve this problem
A cow is standing in the middle of an open, flat field. A plumb bob with a mass of 1 kg is suspended via an unstretchable string 10 meters long so that it is hanging down roughly 2 meters away from the center of mass of the cow. Making any reasonable assumptions you like or need to, estimate the angle of deflection of the plumb bob from vertical due to the gravitational field of the cow.

Answers

Answer:

The angle of deflection will be "1.07 × 10⁻⁷°".

Explanation:

The given values are:

Mass of a cow,

m = 1100 kg

Mass of bob,

mb = 1 kg

The total distance between a cow and bob will be,

d = 2 m

Let,

The tension be "t".

The angle with the verticles be "[tex]\theta[/tex]".

Now,

Vertically equating forces

⇒  [tex]T\times Cos \theta =mb\times g[/tex] ...(equation 1)

Horizontally equating forces

⇒  [tex]T\times Sin \theta = G\times M\times \frac{mb}{d^2}[/tex] ...(equation 2)

From equation 1 and equation 2, we get

⇒  [tex]tan \thata=\frac{G\times M}{g\times d^2}[/tex]

O putting the estimated values, will be

⇒  [tex]\theta = tan(\frac{6.674\times 10^{-11}\times 1100}{9.8\times 2^2} )[/tex]

⇒  [tex]\theta = 1.07\times 10^{-7}^{\circ}[/tex]


Consider an atom. Which contributes most to the size of the atom?

Answers

Answer:

Protons contribute the most to the size of the atom

Answer:

Protons

Explanation:

Protons contribute more to both the mass and size of an atom. Protons contribute more to an atom's mass while electrons contribute more to its size.

An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary, the tension in the cable was 6000 N. When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N drag force. What was the tension in the cable when the craft was being lowered to the seafloor?

Answers

Answer:

T =  4200N

Explanation:

When the submersible craft is at rest, the tension in the cable is 6000N.

With this information you can calculate the weight of the craft by summing the forces (the summation of the force is zero because the craft is at rest):

[tex]T-W=0\\\\W=T=6000N[/tex]

When the craft is going down with a constant speed, there is a drag force of 1800N. Then, by using the second Newton law you have:

[tex]T-W+F_d=0[/tex]   (1)

Fd: drag force

The summation of the forces is zero because the craft moves with constant velocity, that is, there is no acceleration.

You calculate the new tension on the cable by solving the equation (1) for T:

[tex]T=W-Fd=6000N-1800N=4200N[/tex]

hence, the tension is 4200N

Complete the sentence below correctly.

A compression of a longitudinal wave is like a

of a transverse wave.

OA) crest

OB) trough

OC) rarefaction

OD) compression

Answers

Answer:

A.  Crest

Explanation:

Longitudinal wave is a type of wave that is characterized by the particles of the medium's movement in a parallel direction in comparison to the direction in which wave travels, such that, in compression of longitudinal wave, the density of the wave medium is at its highest due to its closeness together than natural state, while in rarefaction, the density is at its lowest due to wave medium spread apart than normal.

Similarly, in Transverse wave, the crest of a wave implies the medium has reached the highest point while the trough of the wave depicts the lowest point the wave medium has reached.

Therefore, longitudinal wave's compression and rarefaction equates accordingly to the crest and trough of a transverse wave.

Hence, a compression of a longitudinal wave is like a CREST of a transverse wave.

Three Small Identical Balls Have Charges -3 Times 10^-12 C, 8 Times 10^12 C And 4 Times 10^-12 C Respectively. They Are Brought In Contact And Then Separated. Calculate Charge On Each Ball.​

Answers

Answer:

The charge in each ball will be 3 * 10^-12 C

Explanation:

(Assuming the correct charge of the second ball is 8 * 10^-12)

When the balls are brought in contact, all the charges are split evenly among then.

So first we need to find the total charge combined:

(-3 * 10^-12) + (8 * 10^-12) + (4 * 10^-12) = 9 * 10^-12 C

Then, when the balls are separated, each ball will have one third of the total charge, so in the end they will have the same charge:

(9 * 10^-12) / 3 = 3 * 10^-12 C

So the charge in each ball will be 3 * 10^-12 C

The motion of a free falling body is an example of __________ motion​

Answers

Answer:

uniformly accelerated motion

Explanation:

The motion of the body where the acceleration is constant is known as uniformly accelerated motion. The value of the acceleration does not change with the function of time.

4. An electric iron has a
power rating of 750W
a. How many joules of
electric energy does it
change into heat energy
every second?
b. How many joules of
work can it do in 3
seconds
c. How long does it take
the iron to do 1500J of
work?
5. Use the kinetic particle
theory to explain why a
solid has a definite shape
and liquid has none.​

Answers

Answer:

4.

a) W = 750 J

b) W = 2250 J

c) t = 2 sec

5. Answered in explanation

Explanation:

4.

The formula of power is given as:

P = W/t

where,

P = Power

W = Work Done

t = Time Taken

a)

Here,

P = 750 W

t = 1 sec

W = ?

Therefore,

750 W = W/1 sec

W = 750 J

b)

Here,

P = 750 W

t = 3 sec

W = ?

Therefore,

750 W = W/3 sec

W = (750 W)(3 sec)

W = 2250 J

c)

Here,

P = 750 W

t = ?

W = 1500 J

Therefore,

750 W = 1500 J/t

t = 1500 J/750 W

t = 2 sec

5.

According to Kinetic Particle Theory, the molecules are tightly packed with each other, by strong inter-molecular forces and they can only vibrate at their position. While, molecules or particles in liquids have lesser attractive forces among them. They can move in layers and can take the shape of any container. This is the reason why solid has a definite shape and liquid has none.

Helppppp please thanks

Answers

Answer:

It represents battery

Answer: I think #1 represent lights and #2 represent the battery

Having successfully ransomed a nearby city with her rail gun, Prof. Marcia Grail is looking for new and exciting ways to wreck science based havok for profit. She constructs a device capable of creating a constant intensity of electromagnetic radiation of any frequency over a circular space of radius 50cm. In order to do the most damage to biological systems (e.g. make those filthy normal humans pay), what type of electromagnetic wave does she need to set the device for

Answers

Answer:

Gamma radiation

Explanation:

Electromagnetic radiations are waves that do not require material medium for their propagation, and they travel at the same velocity. When these waves are arranged with respect to increasing frequency or decreasing wavelength, it forms a spectrum.

Since Prof. Marcia Grail's device can create an electromagnetic radiation of any frequency, the appropriate radiation to achieve her goal would be gamma radiation.

Gamma radiation is a high penetrating radiation with lethal effects on exposed biological molecules, causing induction of cancer and genetic mutations even at low level.

Other Questions
O Periodontist4 Multiple ChoiceProtective bases are placed when it is necessary to protect the pulp before the restoration is placed, because without this protection there may be O Premature loss of the restorative materialO Premature contact on the restorative materialO Post-operative sensitivity and damage to the pulpo Occlusal trauma Which shows a perfect square trinomial please help soon What is the area of a circle with a radius of 6 inches?9. in.O 125 in.O 36in 281 in 2 what are the coordinates of D what are examples of finance careers But Mr. Reagan has denied that he knew of the diversion.In a videotaped deposition provided early last year inadvance of Mr. Poindexter's trial, the former Presidentsaid he was unable to recall virtually any specific detailsof the affair---David Johnston,"North Says Reagan Knew of Iran Deal,"New York Times, 1991Why does Reagan's videotaped deposition make hisinvolvement in the Iran-Contra Affair uncertain?He was required to provide the deposition.He was unable to recall details.He was not with Poindexter.He calls the arms deal an affair. what is the frequency of a ocean wave that is traveling at a speed of 45 m/s if it has a wavelength of 3 meters? please show work Maria rewrites a fraction less than 1 as a decimal. The numerator is a whole number greater than 0. Which denominator will the fraction always convert to a repeating decimal? 24-Complete the following sentence: Osmosis is a process during the _____ moves to balance the concentrations on both sides of a membrane.the choices: a: solute b: solvent c: substrate d: soda cracker What does American Frontier mean in the 19th century (not tv show) mary practiced piano for two or more hours each week write and solve an inequality to represent how many hours mary practiced the piano in 4 weeks Single Antigen, Multiple Organs Some Type-II immunopathology mediated autoimmune diseases have manifestations in multiple different organs. Discuss how antibodies to one single antigen can cause damage in multiple sites throughout the body. Things you might discuss include, but are not limited to where the antigen could be expressed, how antibodies are made, how they bind antigen, where they circulate, the ratios of antigen to antibody, mechanisms of the immune system that result in cellular/tissue damage, or how immune system components can affect other organs. You might also comment on what makes one antigen an attractive target rather than another. Please do NOT comment on all the things listed above, they are just to get you thinking. If you are having trouble getting started, it might help to think about a specific disease which affects multiple organs... Good Luck! Lines a and b are parallel.Parallel lines a and b are cut by transversals s and t. The angles formed by the intersection of lines a, s, and t, clockwise from top left are (7 x) degrees, blank; formed by lines b and s are blank, blank, blank, (11 x) degrees; formed by lines b and t are 90 degrees,What is the value of x?5103555If you answer correctly, we will name the brainiest!This is a challenge question, you have 5 minutes. Why is it important to know who is telling the story Micro: Step 1: Respond to the following:Discuss the major differences between the innate and adaptive host defenses. Describe in detailhumoral and cell-mediated immunity, with an emphasis on the cell types involved, and effectiveness ofthe overall immune response. How do the humoral and cell-mediated immune responses differ? Howdo they compliment each other to produce an effective immune response and build immunity? mention the merits and demerits of fedralism Elisa is upset with her supervisor because she was denied her requested vacation days, which were given to another worker. She is experiencing a very low level of job satisfaction, but cannot afford to quit her job. Describe three negative, passive responses that Elisa might take due to her dissatisfaction. Imagine that her manager actively catches her in a manifestation of workplace deviance. Predict the outcome of Elisa's behavior. You are given the function h(t)=t2+2t+1. Find h(2). h (-2)= The price of oil, in dollars per barrel, declined last week by 3.5%. If it started the week at 102.00 per barrel, at what per barrel price did it end the week? Oscar walked at the same rate for 10.5 miles. Hecompleted his walk in 3 hours. What was Oscar'srate, in miles per hour, during his walk?