A 2300 kg truck has put its front bumper against the rear bumper of a 2500 kg SUV to give it a push. With the engine at full power and good tires on good pavement, the maximum forward force on the truck is 18,000 N. What is the maximum possible acceleration the truck can give the SUV?

Answers

Answer 1

Answer:

Acceleration a = 3.75 m/s^2

Explanation:

Given that

Mass M1 = mass of the truck = 2300kg

Mass M2 = mass of the SUV = 2500kg

Force applied F = 18000N

From Newton second law,

F = ma

Where a = acceleration

We must consider the entire mass involved in the system. Therefore,

F = (M1 + M2)a

Make a the subject of formula

a = F/(M1 + M2)

Acceleration a = 18000/( 2300 + 2500)

Acceleration a = 18000/ 4800

Acceleration a = 3.75 m/s^2


Related Questions

As the space shuttle orbits the Earth, the shuttle and the astronauts
accelerate towards the Earth with the same acceleration. What effect does
this create?
A. The 'g' forces astronauts feel.
B. Weightlessness
C. Astronauts feeling dizzy when they land.
D. Astronauts losing weight while in space.

Answers

The answer is B. Weightlessness

A 350-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,010 A. If the conductor is copper with a free charge density of 8.50 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 107 for the number of seconds in a year.)

Answers

Answer:

t = 47 years

Explanation:

To find the number of years in which the electrons cross the complete transmission, you first calculate the drift velocity of the electrons in the transmission line, by using the following formula:

[tex]v_d=\frac{I}{nAq}[/tex]         (1)

I: current = 1,010A

A: cross sectional area of the transmission line = π(d/2)^2

d: diameter of the transmission line = 2.00cm = 0.02 m

n: free charge density = 8.50*10^28 electrons/m^3

q: electron's charge = 1.6*10^-19 C

You replace the values of all parameters in the equation (1):

[tex]v_d=\frac{1010A}{(8.50*10^{28}m^{-3})(\pi(0.02m/2)^2)(1.6*10^{-19}C)}\\\\v_d=2.36*10^{-4}\frac{m}{s}[/tex]

with this value of the drift velocity you can calculate the time that electrons take in crossing the complete transmission line:

[tex]t=\frac{d}{v_d}=\frac{350km}{2.36*10^{-4}m/s}=\frac{350000m}{2.36*10^{-4}m/s}\\\\t=1,483,050,847\ s[/tex]

Finally, you convert this value of the time to years:

[tex]t=1,483,050,847s*\frac{1\ year}{3.154*10^7s}=47\ years[/tex]

hence, the electrons take around 47 years to cross the complete transmission line.

A projectile is fired with an initial speed of 37.7 m/s at an angle of 41.2° above the horizontal on a long flat firing range. Determine the maximum height reached by the projectile.

Answers

Answer:

h = 31.46 m

Explanation:

We have,

Initial speed of a projectile is 37.7 m/s

It was projected at an angle of 41.2° above the horizontal on a long flat firing range.

It is required to find the maximum height reached by the projectile. The formula used to find it is given by :

[tex]h=\dfrac{u^2\sin^2\theta}{2g}[/tex]

Plugging all the known values,

[tex]h=\dfrac{(37.7)^2\times \sin^2(41.2)}{2\times 9.8}\\\\h=31.46\ m[/tex]

So, the maximum height reached by the projectile is 31.46 m.

Chris and Sue are wearing harnesses and are hanging from the ceiling by means of ropes attached to them. They are face to face and push off against each other. Sue has a mass of 52 kg and Chris has a mass of 78 kg. Following the push, Sue reaches a height of 0.65 meters above her starting point. How high does Chris reach?

Answers

Answer:

h = 0.288m

Explanation:

Assume

[tex]v_1[/tex] = Speed of Sue

[tex]v_2[/tex] = Speed of Chris immediately after the push

Sue's KE = [tex]\frac{1}{2} mv_1\ ^2 = 26 v_1 \ ^2[/tex]

now she swings this is converted into gravitation at PE of

mg n = 52 × 9.8 × 0.65  

= 331.24

[tex]26v_{1}\ ^2[/tex] = 331.24

So, [tex]v_1 = 3.569[/tex]

They started at rest by conservation of momentum in case of push off the magnitude of sue momentum and it is equal to the magnitude of Chris momentum in the opposite or inverse direction

[tex]m_1v_1 = m_2v_2[/tex]

[tex]52 \times 3.569 = 78 \times v_2[/tex]

[tex]v_2 = 2.380[/tex]

Chris kt = [tex]\frac{1}{2} \times 78 \times 2.380^2[/tex]

= 220.827

220.827 = mgh

So, h = 0.288m

You are pushing a cart across the room, and the cart has wheels at the front and the back. Your hands are placed on top of the cart at the center (left to right) of the top edge, pushing horizontally. There is friction between the wheels and the floor. Is the normal force between the floor and the front wheels greater than, smaller than, or equal to the normal force between the floor and the rear wheels? a) The force on the front wheels must be smaller than the force on the rear wheels. b) The force on the front wheels must be equal to the force on the rear wheels. c) The force on the front wheels must be greater than the force on the rear wheels.

Answers

Answer:

The normal force is the force that the floor does as a reaction of the gravitational force that an object does against the floor (is the resistance that objects have when other objects want to move trhough them, and the force comes by the 3rd Newton's law, and this is specially used in cases where the first object is fixed, like walls or the floor). With this in mind, the point in where the normal force will be greater is the point that is closer to the center of mass of the object (the point with more mass)

If the wheels are in the extremes of the object, and the center of mass is in the middle of the object, the normal force will be equal. Now if for example, you put a little mass in one end of the object, now the center of weight displaces a little bit and is not centered, and the side is where you put the weight on will receive a bigger normal force from the floor than the other side.

The force on the front and rear wheels can be determined by finding the

force acting under equilibrium conditions.

The normal reaction between the floor and the front wheel is larger. The

correct option is c) The force on the front wheels must be greater than the

force on the rear wheels.

Reasons:

The forces acting on the wheels are;

Vertical forces acting on the cart:

The weight of the cart acting on the floor

The normal reaction of the floor on the wheels

The horizontal acting on the cart:

Pushing force acting horizontally

Friction force acting in the reverse direction

At equilibrium, the cart does not tip over

Sum of moment about the rear wheel = [tex]\mathbf{W \times \dfrac{d}{2} + F \times h - N_{front} \times d} = 0[/tex]

Where;

h = The height of the cart

d = depth of the cart

[tex]N_{front}[/tex]  = The normal reaction at the front wheels

Therefore;

[tex]\displaystyle N_{front} = \frac{W \times \dfrac{d}{2} + F \times h}{d} = \mathbf{ \frac{W}{2} + \frac{F \times h}{d}}[/tex]

Sum of moment about the front wheel = [tex]\mathbf{ F \times h + N_{rear} \times d - W \times \dfrac{d}{2} } = 0[/tex]

Therefore;

[tex]\displaystyle N_{rear} = \frac{W \times \dfrac{d}{2} - F \times h}{d} = \mathbf{ \frac{W}{2} - \frac{F \times h}{d}}[/tex]

Which gives;

[tex]\displaystyle N_{front} = \mathbf{ \displaystyle N_{rear} + 2 \times \frac{F \times h}{d}}[/tex]

[tex]\displaystyle 2 \times \frac{F \times h}{d} > 0[/tex]

Therefore;

[tex]\displaystyle N_{front} > \displaystyle N_{rear}[/tex]

The correct option is c) The force on the front wheels must be greater than

the force on the rear wheels.

Learn more here:

https://brainly.com/question/17574217

A box is being pulled to the right. What is the magnitude of the Kinect frictional force?

Answers

The answer to this question is A - 25 N

The so-called "force" of friction always acts exactly opposite to the direction in which an object is moving.  So for this question, since the box is moving to the right, the "force" of friction is acting toward the left.

There's not enough information given in the question to determine its magnitude.

Two boats start together and race across a 50-km-wide lake and back. Boat A goes across at 50 km/h and returns at 50 km/h. Boat B goes across at 25 km/h, and its crew, realizing how far behind it is getting, returns at 75 km/h. Turnaround times are negligible, and the boat that completes the round-trip first wins.

Required:
a. Which boat wins?
b. What is the average velocity of the winning boat?

Answers

Answer:

Boat A wins and 50km/hr

Explanation:

To solve this problem we need to calculate the time required for both boats to make the round trip.

For Boat A.

The time required for the first trip =distance/ speed = 50/50 = 1h

For the return trip the time is same since it's the same distance on the same speed.

Hence the time taken for boat A to make the round trip is 2hrs.

For boat B,

The time required for the first trip =distance/ speed = 50/25 = 2h

The time for the return trip is;

=distance/ speed = 50/75 = 2/3h= 2/3×60= 40mins

By comparing both time.

Boat A requires less time hence Boat A wins.

2.The average velocity of the winning boat is the velocity of boat A.

Which is total distance/ total time for the trip.

100km/2hrs = 50km/hr

boat A would win the race and the average velocity of the winning boat would be 50 km/h

What is Velocity?

The total displacement covered by any object per unit of time is known as velocity. It depends on the magnitude as well as the direction of the moving object.

As given in the problem Two boats start together and race across a 50-km-wide lake and back. Boat A goes across at 50 km/h and returns at 50 km/h. Boat B goes across at 25 km/h, and its crew, realizing how far behind it is getting, returns at 75 km/h.

Turnaround times are negligible, and the boat that completes the round-trip first wins

Average velocity of the boat A = ( 50 + 50 ) / 2

                                                              = 50 km /h

Thus, boat A would win the race and the average velocity of the winning boat would be  50 km/h

Learn more about Velocity from here,

brainly.com/question/18084516

#SPJ2

What is the radius of a nucleus of an atom?

Answers

Answer:

i think its 1-10 ´ 10-15 m

Explanation:

It is found that nuclear radii range from 1-10 ´ 10-15 m. This radius is much smaller than that of the atom, which is typically 10-10 m. Thus, the nucleus occupies an extremely small volume inside the atom. The nuclei of some atoms are spherical, while others are stretched or flattened into deformed shapes.

The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 10.6 V and b = -4.90 V/m. (a) Determine the potential at x = 0. 10.6 Correct: Your answer is correct. V Determine the potential at x = 3.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. magnitude 4.9 Correct: Your answer is correct. V/m direction +x Correct: Your answer is correct. Determine the magnitude and direction of the electric field at x = 3.00 m. magnitude V/m direction

Answers

Answer:

a) 10.6V

b) E = 4.9V/m, +x direction

c) E = 4.9V/m, +x direction

Explanation:

You have the following function:

[tex]V=a+bx[/tex]  (1)

for the potential in a region between x=0 and x=6.00 m

a = 10.6 V

b = -4.90V/m

[tex]V=10.6V-4.90\frac{V}{m}x[/tex]

a) for x=0 you obtain for V:

[tex]V=10.6V-4.90\frac{V}{m}(0m)=10.6V[/tex]

b) The relation between the potential difference and the electric field can be written as:

[tex]E=-\frac{dV}{dx}=-b=-(-4.9V/m)=4.9V/m[/tex]  (2)

the direction is +x

c) The electric field is the same for any value of x between x=0 and x=6m.

Hence,

E = 4.9V/m, +x direction

The decrease of PE for a freely falling object equals its gain in KE, in accord with the conservation of energy. By simple algebra, find an equation for an object's speed v after falling a vertical distance h. Do this by equating KE to its change of PE.

Answers

Answer:

[tex]v = \sqrt{20h} [/tex]

Explanation:

The potential energy (PE) we are looking here is gravitational potential energy (GPE).

GPE= mgh,

where m is the mass of an object,

g is the gravitational field strength

h is the height of the object

KE= ½mv²,

where m is the mass and v is the velocity

loss in GPE= gain in KE

mgh= ½mv²

gh= ½v² (divide by m throughout)

Assuming that the object is on earth, then g= 10N/Kg

½v²= 10h (substitute g=10)

v²= 20h (×2 on both sides)

v= √20h (square root both sides)

A traffic light is weighing 200N hangs from a vertical cable tied to two other cables that are fastened to a support. The upper cable makes angles of 41° and 63° with the horizontal. Calculate the tension in each of the three cables.

Answers

Answer:

T₁ = 93.6 N , T₂ = 155.6 N , T₃ = 200 N

Explanation:

This is a balance exercise where we must apply the expressions for translational balance in the two axes

     ∑  F = 0

Suppose that cable t1 goes to the left and the angles are 41º with respect to the horizontal and cable t2 goes to the right with angles of 63º

decompose the tension of the two upper cables

          cos 41 = T₁ₓ / T1

          sin 41 = T₁y / T1

          T₁ₓ = T₁  cos 41

          T₁y= T₁  sin 41

for cable gold

           cos 63 = T₂ / T₂

           sin 63 = [tex]T_{2y}[/tex] / T₂

We apply the two-point equilibrium equation: The junction point of the three cables and the point where the traffic light joins the vertical cable.

Let's start by analyzing the point where the traffic light meets the vertical cable

              T₃ - W = 0

              T₃ = W

              T₃ = 200 N

now let's write the equations for the single point of the three wires

X axis

   - T₁ₓ + T₂ₓ = 0

  T₁ₓ = T₂ₓ

   T1 cos 41 = T2 cos 63

   T1 = T2 cos 63 / cos 41                (1)

y Axis

      [tex]T_{1y}[/tex] + T_{2y} - T3 = 0

       T₁ sin 41 + T₂ sin 63 = T₃          (2)

to solve the system we substitute equation 1 in 2

        T₂ cos 63 / cos 41 sin 41 + T₂ sin 63 = W

         T₂ (cos 63 tan 41 + sin 63) = W

         T₂ = W / (cos 63 tan 41 + sin 63)

We calculate

          T₂ = 200 / (cos 63 tan 41 + sin 63)

          T₂ = 200 / 1,2856

           T₂ = 155.6 N

we substitute in 1

            T₁ = T₂ cos 63 / cos 41

             T₁ = 155.6 cos63 / cos 41

             T₁ = 93.6 N

therefore the tension in each cable is

            T₁ = 93.6 N

             T₂ = 155.6 N

             T₃ = 200 N

ISC 152
Describe the
two major sources of energy and
give two
examples
each

Answers

HEYA!!

Here's your Answer:

Energy is the power we use for transportation, for heat and light in our homes and for the manufacture of all kinds of products. There are two sources of energy: renewable and non-renewable energy

RENEWABLE ENERGY: Renewable energy, often referred to as clean energy, comes from natural sources or processes that are constantly replenished. For example, (sunlight or wind keep shining and blowing), even if their availability depends on time and weather.

NON-RENEWABLE ENERGY:Non-renewable energy comes from sources that will run out or will not be replenished in our lifetimes—or even in many, many lifetimes.

Most non-renewable energy sources are (fossil fuels: coal, petroleum, and natural gas).

HOPE IT HELPS!!!

Two loudspeakers are located 2.65 m apart on an outdoor stage. A listener is 19.1 m from one and 20.1 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20 Hz–20 kHz). The speed of sound in the air is 343 m/s. What are the three lowest frequencies that give minimum signal (destructive interference) at the listener's location?

Answers

Answer:

171.5Hz,514.5Hz and 857.5Hz

Explanation:

We are given that

Distance between two loudspeaker,d=2.65 m

Distance of listener from one end=19.1 m

Distance of listener from other end=20.1 m

[tex]\Delta L=20.1-19.1=1[/tex]m

Speed of sound,v=343m/s

For destructive interference

[tex]f_{min,n}=\frac{(n-0.5)v}{\Delta L}[/tex]

Using the formula  and substitute n=1

[tex]f_{min,1}=\frac{(1-0.5)\times 343}{1}=171.5Hz[/tex]

For n=2

[tex]f_{min,2}=\frac{(2-0.5)\times 343}{1}=514.5Hz[/tex]

For n=3

[tex]f_{min,3}=(3-0.5)\times 343=857.5Hz[/tex]

Hence, the three lowest frequencies that give minimum signal (destructive interference) at the listener's location is given by

171.5Hz,514.5Hz and 857.5Hz

18. Compared to its weight on Earth, a 5 kg object on the moon will weigh A. the same amount. B. less. C. more.

Answers

Answer:

B. less

Explanation:

acceleration due to gravity on Earth, g = 9.8 m/s²

acceleration due to gravity on Moon, g = 1.6 m/s²

Given mass of the object as, m = 5 kg

Weight of an object is given as, W = mg

                                                         

Weight of the object on Earth, W = 5 x 9.8 = 49 N

Weight of the object on Moon, W = 5 x 1.6 = 8 N

Therefore, the object weighs less on the moon compared to its weight on Earth.

The correct option is "B. less"

A ball is thrown eastward into the air from the origin (in the direction of the positive x-axis). The initial velocity is 60 i + 64 k, with speed measured in feet per second. The spin of the ball results in a southward acceleration of 6 ft/s2, so the acceleration vector is a = −6 j − 32 k. Where does the ball land? (Round your answers to one decimal place.) ft from the origin at an angle of ° from the eastern direction toward the south. With what speed does the ball hit the ground? (Round your answer to one decimal place.)

Answers

The ball's position in the air at time t is given by the vector,

p(t) = (60 i + 64 k) t + 1/2 (-6 j - 32 k) t ²

and its velocity is given by

v(t) = (60 i + 64 k) + (-6 j - 32 k) t

The ball is in the air for as long as it takes for the vertical (k) component of the position vector to reach 0, so we solve,

64 t - 32/2 t ² = 0  ==>  t = 0 OR t = 4

and so the ball is in the air for 4 s.

After this time, the ball has position vector

p(4) = (60 i + 64 k) t + 1/2 (-6 j - 32 k) t ² = 240 i - 48 j

which has magnitude

||p(4)|| = √(240² + (-48)²) = 48 √26 ≈ 244.8 ft

in a direction θ in the x,y plane from the positive x axis such that

tanθ = -48/240 = -1/5  ==>  θ = -arctan(1/5) ≈ -11.3º

or 11.3º South of East.

The ball hits the ground with speed

||v(4)|| = ||60 i - 24 j - 64 k|| = √(60² + (-24)² + (-64)²) = 4 √517 ≈ 91.0 ft/s

kinematic relationships can be used in all dimensions and finding the position and velocity when reaching the ground is

        r = 244.8 ft, tea = 21.8º from East to South

        v = 91.0 ft / s

given parameters

Initial velocity v = (60 i + 64 k) ft / sBody acceleration a = (-6 j - 32 k) ft / s²

to find

where it reaches the groundground speed

Kinematics allows finding the position, velocity and acceleration of the body, in this case we have a problem in three dimensions, where they establish a Cartesian coordinate system, a method to solve this exercise is to solve each component independently

a)  The acceleration of gravity acts on the z axis, so let's find the time it takes to reach the ground, if the initial vertical velocity is v_{oz} = 64 ft/s and the acceleration is a_z = g = -32 ft / s², we assume that the ball leaves the ground (z₀ = 0)

         z = z₀ + v_{oz} t + ½ a_z t²

when reaching the ground its height of zero and

        0 = 0 + v_{oz} t + ½ a_z t²

        t (v_{oz) + ½ a_z t) = 0

        t (64 - 16 t) = 0

the solusion of this squadron is

       y = 0

       t = 4 s

the first time is when it leaves and the second time is for when it reaches the ground, therefore the flight time is t = 4s

with this time we find the displacement is each exercise

X axis

    in this axis there is no acceleration, so we use the uniform motion relationships

        vₓ = x / t

        x = vₓ t

        x = 60 4

        x = 240 ft

Y Axis

on this axis there is an acceleration of a_y = -6 ft/s and an initial velocity v_{oy} = 0

we use the kinematic relation

       y = v_{oy} t + ½ a_y t²

       y = 0 - ½ 6 4²

       y = - 48 ft

let's use the Pythagoras theorem to find the position

       r² = (x -x₀) ² + (y -y₀) ² + (z -z₀) ²

       r² = (240-0) ² + (-48-0) ² + (0-0) ²

       r = 244.8 ft

We use trigonometry to find the direction

      tan θ = y / x

       θ = tan⁻¹ [tex]\frac{y}{x}[/tex]

       θ = tan⁻¹  [tex]\frac{96}{240}[/tex]

       θ = -21.8º

This angle is measured clockwise from the x axis, it can also be read

        θ = 21.8º from East to South

b)  Let's look for the speed when we hit the ground

X axis

       vₓ = v_{ox} + aₓ t

       vₓ = 60 - 0

       vₓ = 60 ft / s

Y Axis

       v_y = v_{oy} + a_y t

       v_y = 0 - 6 4

        v_y = -24 ft / s²

Z axis

       v_z = v_{oz} + a_z t

       v_z = 64 -32 4

       v_z = -64 ft / s

With the Pytagoras  theorem find the modulus of this speed is

        v² = vx² + vy² + vz²

        v² = 60² + 24 ² + 64²

        v = 91.0 ft / s

In conclusion, the kinematic relationships can be used in all dimensions and finding the position and velocity when reaching the ground is

       a) r = 244.8 ft, θ = 21.8º from East to South

       b) v = 91.0 ft / s

learn more about kinematics here:

https://brainly.com/question/11503629

An atom with 19 protons and 18 neutrons is an

Answers

K+ js an atom with 19 protons and 18 neutrons.

To Da
The radius of a circular track is 7 m. What will be the speed of a scooter, if it takes 20 seconds to complete one round of the
track?
published yet
04
published yet
A: 2.2 m/s
published yet
B: 22 m/s
02
published yet
C: 0.22 m/s
D: 022m/s
Previous
Next
Skip
10
12
13
16
17
25
24/05/20
Answered Questio
Skipped Question
Unseen Question
Pls help

Answers

Answer:

A

Explanation:

Firstly, recall the equation for the circumference of a circle (C=2*pi*r). Then apply the formula speed = distance/time.

Answer:

i see they did already i am just supporting them

Answer:

A

Explanation:

Firstly, recall the equation for the circumference of a circle (C=2*pi*r). Then apply the formula speed = distance/time.

A rectangular tank is filled to a depth of 10m with freshwater and open to air at atmospheric pressure.
It is fitted with two drain plugs on the bottom of the tank, one at the left side and one at the right side.
Both plugs have chains attached and are removed by lifting the chains.
The left-side plug is a flat circular disk of 50cm diameter and 1cm height.
The right-side plug is a hemisphere and is also 50cm in diameter.
Q1. What is the upwards force required to lift the left- side circular disk plug?
Q2. What is the upwards force required to lift the right-side hemisphere plug?

Answers

Answer:

1. 39068.07 N

2. 19534.036 N

Explanation:

depth of water h = 10 m

atmospheric pressure Patm = 101325 Pa

density of water p = 1000 kg/m^3

acceleration due to gravity g = 9.81 m/s^2

pressure due to depth of water = pgh

P = 1000 x 9.81 x 10 = 98100 Pa

total pressure on the bottom of the tank is Patm + p = 101325 + 98100 = 199425 Pa

Left plug has diameter = 50 cm = 0.5 m

radius = 0.5/2 = 0.25 m

height = 1 cm = 0.01 m

height below tank surface = 10 - 0.01 = 9.99

pressure at this depth =  1000 x 9.81 x 9.99 = 98001.9 Pa

total pressure = Patm + P = 101325 + 98001.9 = 199326.9 Pa

surface area of plug = π[tex]r^{2}[/tex] = 3.142 x [tex]0.25^{2}[/tex] = 0.196 [tex]m^{2}[/tex]

force required to lift left plug = pressure x area

F =  199326.9 x 0.196 = 39068.07 N

The right side is a hemisphere with the same diameter, therefore surface area is half of the left plug

A = 0.196/2 = 0.098 [tex]m^{2}[/tex]

force F required to lift right plug =  199326.9  x 0.098 = 19534.036 N

If a ball is thrown vertically upward with a velocity of 160 ft/s, then its height after t seconds is s = 160t − 16t2. (a) What is the maximum height reached by the ball? ft (b) What is the velocity of the ball when it is 384 ft above the ground on its way up? (Consider up to be the positive direction.) ft/s What is the velocity of the ball when it is 384 ft above the ground on its way down?

Answers

Answer:

a) h_max = 400ft

b) v = 1024 ft/s

Explanation:

The general equation of a motion is:

[tex]s(t)=v_ot-\frac{1}{2}gt^2[/tex]  (1)

You have the following equation of motion is given by:

[tex]s(t)=160t-16t^2[/tex]  (2)

You compare both equations (1) and (2) and you obtain:

vo: initial velocity = 160ft/s

g: gravitational acceleration = 32ft/s

a) The maxim height reached by the ball is given by:

[tex]h_{max}=\frac{v_o^2}{2g}=\frac{(160ft/s)^2}{64ft/s^2}=400ft[/tex]

b) The velocity is given by:

[tex]v^2=v_o^2-2gh\\\\v=\sqrt{(160ft/s)^2-2(32ft/s^2)(384ft)}=1024ft/s[/tex]

Answer:

a) Smax = 400 ft

b) v = 32 ft/s

c) v = - 32 ft/s

Explanation:

(a)

The function given for the height of ball is:

s = 160 t - 16 t²

Therefore, in order to find the time to reach maximum height (in-flexion point), we must take the derivative with respect to t and set it equal to zero:

Therefore,

160 - 32 t = 0

32 t = 160

t = 160/32

t  = 5 sec

Therefore, maximum distance is covered at a time interval of 5 sec.

Smax = (160)(5) - (16)(5)²

Smax = 800 - 400

Smax = 400 ft

b)

First we calculate the time at which ball covers 384 ft

384 = 160 t - 16 t²

16 t² - 160 t + 384 = 0

Solving Quadratic Equation:

Either:

t = 6 sec

Or:

t = 4 sec

Since, the time to reach maximum height is 5 sec. Therefore, t < 5 sec

Therefore,

t = 4 sec

Now, we find velocity at 4 sec by taking derivative od s with respect to t at 4 sec:

v = 160 - 32 t

v = 160 - (32)(4)

v = 32 ft/s

c)

Since, t = 6 s > 5 s

The second value of t = 6 sec must correspond to the instant when the ball is 384 ft above the ground while traveling downward.

Hence, velocity at that time will be:

v = 160 - (32)(6)

v = -32 ft/s

Negative sign due to downward motion.

A plane travels 2.5 KM at an angle of 35 degrees to the ground, then changes direction and travels 5.2 km at an angle of 22 degrees to the ground. What is the magnitude and direction of the planes total displacement??

Answers

Answer:

7.7 km 26°

Explanation:

The total x component is:

x = 2.5 cos(35°) + 5.2 cos(22°) = 6.87

The total y component is:

y = 2.5 sin(35°) + 5.2 sin(22°) = 3.38

The magnitude is:

d = √(x² + y²)

d = 7.7 km

The direction is:

θ = atan(y/x)

θ = 26°

You are standing at the top of a cliff that has a stairstep configuration. There is a vertical drop of 7 m at your feet, then a horizontal shelf of 8 m, then another drop of 3 m to the bottom of the canyon, which has a horizontal floor. You kick a 0.87 kg rock, giving it an initial horizontal velocity that barely clears the shelf below.
1. What initial horizontal velocity v will be required to barely clear the edge of the shelf below you? The acceleration of gravity is 9.8 m/s2 . Consider air friction to be negligible. Answer in units of m/s.
2. How far from the bottom of the second cliff will the projectile land? Answer in units of m.

Answers

Answer:

1. v = 6.67 m/s

2. d = 9.54 m

Explanation:

1. To find the horizontal velocity of the rock we need to use the following equation:

[tex] d = v*t \rightarrow v = \frac{d}{t} [/tex]    

Where:

d: is the distance traveled by the rock

t: is the time

The time can be calculated as follows:

[tex] t = \sqrt{\frac{2d}{g}} [/tex]

Where:

g: is gravity = 9.8 m/s²

[tex] t = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2*7 m}{9.8 m/s^{2}}} = 1.20 s [/tex]

Now, the horizontal velocity of the rock is:

[tex] v = \frac{d}{t} = \frac{8 m}{1.20 s} = 6.67 m/s [/tex]      

Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.          

2. To calculate the distance at which the projectile will land, first, we need to find the time:

[tex] t = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2*(7 m + 3 m)}{9.8 m/s^{2}}} = 1.43 s [/tex]

So, the distance is:

[tex] d = v*t = 6.67 m/s*1.43 s = 9.54 m [/tex]    

Therefore, the projectile will land at 9.54 m of the second cliff.

I hope it helps you!        

14. High-voltage power lines are a familiar sight throughout the country. The aluminum wire used for some of these lines has a cross-sectional area of 4.9 x 10-4 m2 . What is the resistance of ten kilometers of this wire

Answers

Answer:

The resistance of the aluminium wire is 0.541 ohms

Explanation:

Given:

Cross sectional area of the aluminum wire, A = 4.9 x 10-4 m2

Length of the wire, L = 10 km = 10,000 m

Resistance of the wire = (pL) / A

Where:

p is resistivity of aluminium wire = 2.65 x 10^-8 ohm-m

L is length of the wire

A is cross sectional area of the wire

Substitute these values and solve for resistance of the wire.

Resistance = (2.65 x 10^-8 x 10,000) / (4.9 x 10^-4)

Resistance = 0.541 ohms

Therefore, the resistance of the aluminium wire is 0.541 ohms

An object on a number line moved from x = 15 cm to x = 165 cm and then

moved back to x = 25 cm, all in a time of 100 seconds.

What was the average velocity of the object?

Answers

Answer:

v_avg = 2.9 cm/s

Explanation:

The average velocity of the object is the sum of the distance of all its trajectories divided the time:

[tex]v_{avg}=\frac{x_{all}}{t}[/tex]

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm

Then, x_all = 150cm + 140cm = 290cm

The average velocity is, for t = 100s

[tex]v_{avg}=\frac{290cm}{100s}=2.9\frac{cm}{s}[/tex]

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s

Answer:

The average velocity of the object is 0.1cm/s

Explanation:

Given that the object travels from point 15cm to 165cm and back to 25cm within 100 seconds

The average velocity is calculated as thus.

Average Velocity = ∆D/t

Where ∆D represent the displacement.

The displacement is calculated as follows.

∆D = End point - Start Point.

From the question, the end and start point are 25cm and 15cm respectively.

Hence,

∆D = 25cm - 15cm

∆D = 10cm.

t = 100 seconds

So, Average Velocity = 10cm/100s

Average Velocity = 0.1cm/s

Hence, the average velocity of the object is 0.1cm/s

Describe briefly with used of practical knowledge the effect of the voltage stores across and current
flows through the resistors when connected in:
i. Series
ii. Parallel
(circuit diagram is necessary)

Answers

Answer:

Answer in explanation

Explanation:

The path of flow of circuit is called electric circuit. In an electric circuit, resistances are connected in two different ways, which are:

1- Series Combination of Resistances

2- Parallel Combination of Resistances  

Series combination of resistances

In series combination resistors are connected end to end, and there is only one path for the flow of current.  

Characteristics Of Series Circuit:

1. In series circuit there is only one path for the flow of current.

2. Same amount of current flows through each resistor.

I = I₁ = I₂ = I₃ = In

3. Total voltage of the battery is equal to the sum of voltages across each resistor.

V = V₁ +V₂ + V₃ + ... + Vn

4. In series combination the combined resistance of the resistors can be obtained by adding the value of each resistor.

R  =  R₁ + R₂ + R₃ + … + Rn

Parallel combination of resistances

Resistances are set to be connected in parallel, when each of them is connected directly from the terminals of electric source.  

Characteristics Of Series Circuit:

1.  There are more than one path for the flow of current.

2. The value of potential difference remains constant on each resistor.

V = V₁ = V₂ = V₃ = Vn

3. Total current is equal to the sum of current passing through each resistor.

I = I₁ + I₂ + I₃ +...+ In

4. Reciprocal of equivalent resistance is equal to the sum of reciprocals of resistances connected in parallel.  

1/R   =  1/R₁  + 1/R₂  + 1/R₃  + … + 1/Rn  

The circuit diagrams are in attachment.

A circular loop of flexible iron wire has an initial circumference of 164cm , but its circumference is decreasing at a constant rate of 11.0cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf induced in the loop after exactly time 4.00s has passed since the circumference of the loop started to decrease AND find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field.

Answers

Answer:

emf = 0.02525 V

induced current with a counterclockwise direction

Explanation:

The emf is given by the following formula:

[tex]emf=-\frac{\Delta \Phi_B}{\Delta t}=-B\frac{\Delta A}{\Delta t}[/tex][tex]\ \ =-B\frac{A_2-A_1}{t_2-t_1}[/tex]   (1)

ФB: magnetic flux =  BA

B: magnitude of the magnetic field = 1.00T

A2: final area of the loop; A1: initial area

t2: final time, t1: initial time

You first calculate the final A2, by taking into account that the circumference of loop decreases at 11.0cm/s.

In t = 4 s the final circumference will be:

[tex]c_2=c_1-(11.0cm/s)t=164cm-(11.0cm/s)(4s)=120cm[/tex]

To find the areas A1 and A2 you calculate the radius:

[tex]r_1=\frac{164cm}{2\pi}=26.101cm\\\\r_2=\frac{120cm}{2\pi}=19.098cm[/tex]

r1 = 0.261 m

r2 = 0.190 m

Then, the areas A1 and A2 are:

[tex]A_1=\pi r_1^2=\pi (0.261m)^2=0.214m^2\\\\A_2=\pi r_2^2=\pi (0.190m)^2=0.113m^2[/tex]

Finally, the emf induced, by using the equation (1), is:

[tex]emf=-(1.00T)\frac{(0.113m^2)-(0.214m^2)}{4s-0s}=0.0252V=25.25mV[/tex]

The induced current has counterclockwise direction, because the induced magneitc field generated by the induced current must be opposite to the constant magnetic field B.

Calculate the speed of a wave on a guitar string which has a mass of 55 g and a length of 30 cm if the tension in the string is 200 N

Answers

Answer:

33 m/s

Explanation:

v = √(T / (m/L))

where v is the velocity,

T is the tension,

and m/L is the mass per length.

v = √(200 N / (0.055 kg / 0.30 m))

v = 33 m/s

A space probe on the surface of Mars sends a radio signal back to the Earth, a distance of 9.75 ✕ 107 km. Radio waves travel at the speed of light (3.00 ✕ 108 m/s). How many seconds does it take for the signal to reach the Earth? 

Answers

Answer:

It takes 325 seconds for the signal to reach Earth.

Explanation:

First, you must make a unit change from m/s to km/s in order to make a comparison with the distance of the radio signal sent to Earth. For that, you know that 1 m is 0.001 km. So:

[tex]3*10^{8} \frac{m}{s} =3*10^{8}\frac{0.001 km}{s}=300,000\frac{km}{s}[/tex]

The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.

If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:

a ⇒ b

c ⇒ x

[tex]x=\frac{c*b}{a}[/tex]

In this case, the rule of three is applied as follows: if by definition of speed, 300,000 km of light are traveled in 1 second, 9.75 * 10⁷ km in how long are they traveled?

[tex]time=\frac{9.75*10^{7}km*1second }{300,000 km}[/tex]

time=325 seconds

It takes 325 seconds for the signal to reach Earth.

The number of seconds does it take for the signal to reach the Earth is  325 seconds.

The calculation is as follows;

[tex]= 9.75 \times 10^7 \div 300,000 km[/tex]

= 325 seconds

learn more: https://brainly.com/question/4626564?referrer=searchResults

Is light one dimensional?

Answers

Answer: No.

Explanation: Light exists in 3+1 dimensional space (3 space, 1 time).

No, it is not one dimensional since it can act both as a particle and a wave (photon)

A bike with tires of radius

0.330 m speeds up from rest

to 5.33 m/s in 6.27's. Through

what angle do the wheels turn

in that time?

(Unit = rad)

Answers

Answer:

The wheels turn 101.27 radians in that time.

Explanation:

First, we need to find the angular velocity of the tires. We use the following formula for this purpose:

Δv = rω

ω = Δv/r

where,

ω = Angular Velocity of Tires = ?

Δv = change in linear velocity = 5.33 m/s - 0 m/s = 5.33 m/s

r = radius of tire = 0.33 m

Therefore,

ω = (5.33 m/s)/(0.33 m)

ω = 16.15 rad/s

Now, the angular displacement covered by tires can be found out by using the general formula of angular velocity:

ω = θ/t

θ = ωt

where,

θ = angular displacement = ?

t = time = 6.27 s

Therefore,

θ = (16.15 rad/s)(6.27 s)

θ = 101.27 radians

Adiabatic Equation of State Derive the adiabatic equation of state (2.3.19) using particle conservation (2.3.7) and energy conservation (2.3.21), by assuming that the heat flow vector q and all collision terms in these equations are zero.

p=Cn^{\gamma } Equation 19

\frac{\partial n}{\partial t}+\bigtriangledown (nu)=G-L Equation 7

\bigtriangledown (\frac{3}{2}pu)=\frac{\partial }{\partial t}(\frac{3}{2}p)\mid c Equation 22

Answers

Answer:

Explanation:

jhgfhmhvmghmm

Other Questions
Automobiles are often leased, and there are several terms unique to auto leases. Suppose you are considering leasing a car. The price you and the dealer agree on for the car is $27,600. This is the base capitalized cost. Other costs that may be added to the capitalized cost price include the acquisition (bank) fee, insurance, or extended warranty. Assume these costs are $1,050. Capitalized cost reductions include any down payment, credit for a trade-in, or dealer rebate. Assume you make a down payment of $3,000 and there is no trade-in or rebate. If you drive 12,000 miles per year, the lease-end residual value for this car will be $17,000 after three years.The lease or "money" factor, which is the interest rate on the loan, is the APR of the loan divided by 2,400. The lease factor the dealer quotes you is .00265. The monthly lease payment consists of three parts: A depreciation fee, a finance fee, and sales tax. The depreciation fee is the net capitalization cost minus the residual value, divided by the term of the lease. The net capitalization cost is the cost of the car minus any cost reductions plus any additional costs. The finance fee is the net capitalization cost plus the residual, times the money factor, and the monthly sales tax is the depreciation payment plus the finance fee, times the tax rate.a. What APR is the dealer quoting you? (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.)b. What is your monthly lease payment for a 36-month lease if the sales tax is 7 percent? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Please answer correctly !!!! Will mark brianliest !!!!!!!!! How are natural communities structured? what are riis attitude towards povert 6(5r-11) - (5 - r) A: 30r - 71 B: 31r - 71 C: 29r - 71 D: 31r- 61 please help asap What type of reaction would come from reactants Cu and O please help me, i dont understand a bag containes 8 white marbels and 48 green marbles. If a representative sample contains 2 white marblesthen how many green marbles would you expect it to contain? If i'm having shortness of breath, chest pain, a headache, double vison, dizziness and i'm hyperventilating does that mean i'm dying? Prices to a concert cost N$200 for an adult and N$150 for a child, the concert venue can accommodate at most 240 people. The organizers are giving a N$20 discount to every adult and N$10 discount for every child but do not want the total discounted amount to exceed N$3200. Draw a graph and use it to answer the following questions: i. How many tickets altogether should the organisers sell in order to maximise their sales amount? ii. How many tickets of each type (adult and child) should they sell to get a maximum sales amount? iii. What is the maximum sales amount the organisers can make? iv. If the profit is calculated as follows: profit = total sales total discount amount. How much profit will the organisers make from the maximum sales? Overall presentation (neat, clear and well presented) When solving problems involving forces and Newton's laws, the following summary of things to do will start your mind thinking about getting involved in the problem at hand. When solving problems involving forces and Newton' Apply these steps Use the steps outlined above to find the magnitude of the acceleration a of a chair and the magnitude of the normal force FN acting on the chair: Yusef pushes a chair of mass m = 50.0 kg across a carpeted floor with a force Fp (the subscript 'p' here is lowercase and throughout the question) of magnitude Fp = 168 N directed at ? = 35.0 degrees below the horizontal. The magnitude of the kinetic frictional force between the carpet and the chair is Fk= 99.7 N . Part A Identify and sketch all the external forces acting on the chair. Because the chair can be represented as a point particle of mass m, draw the forces with their tails centered on the black dot in the middle of the chair. Be certain to draw your forces so that they have the correct orientation.Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded. Add.6x -5x +3 +3x2 + 7 x-8A. 9x2 - 2x + 5B. 9x2 + 2x-5C. 9x2 + 12x-5D. 9x2 + 2x + 11 WILL GIVE BRAINLIEST TO ANYONE WHO ANSWERS!!Quadrilateral OPQR is inscribed inside a circle as shown below. What is the measure of angle P? You must show all work and calculations to receive credit. (10 points) Circle N is shown with an inscribed quadrilateral labeled OPQR. O is labeled 2x degrees. P is labeled y degrees. Q is labeled 2 Read the quote below from a northern schoolteacher and use the information to help you answer the question. "Wishing to work where there was the most need there are so many places where nothing has been done for the freedmen, and where they are sorely persecuted we came here. A schoolhouse built by the soldiers had just been destroyed by the citizens. The feeling is intensely bitter against anything northern. The affairs of the Freedmens Bureau have been very much mismanaged, and our government has been disgraced by the troops who were stationed here." What can you infer from the quote above?The Freedmans Bureau was succeeding its goals of furthering education.The local citizens did not support the building of the school house.Southern citizens appreciated the work being done by this schoolteacher.Northern soldiers got along well with the local citizens of the South. The most obvious changes to a colonized country occurred in the countrys What is the domain of the function y= Vx? The inhabitants of a planet in another galaxy have their eyes at the exact center of their 4.0-m-long bodies. How long must a plane mirror be for such a creature to be able to see all of its body in the mirror Critical Thinking ProblemHere you have a magic square. The sum (+) of any 3 numbers added across (), down (), or diagonally ( , ) should have the same sum.You can write and solve equations to fill in the missing numbers on the table. Only write the numbers on the table, not the equations.The magic sum for this square is 465. 2483121762 To qualify for the car race, Christine needed to drive 100 miles under 43 minutes. She completed the first lap in 412 minutes. At this rate, what will be her total time for the 100-mile qualifying distance? plz i justt whant awnser will be marked brillent i will report if ur here for points!!