5) Evaluate the algebraic expression for the given value or values of the variable(s)
8x² + 2y; x = 6 and y = 9
a)2736 b) 660 c) 306 d) 2322
6) The formula C = (F - 32) expresses the relationship between Fahrenheit temperature, F, and Celsius temperature, C. Use the formula to convert 104°F to its equivalent temperature on the Celsius scale.
a) 40°C
b) 76°C
c) 8°c
d) 130°c

Answers

Answer 1

In the first question, we are asked to evaluate the algebraic expression 8x² + 2y for the given values of x = 6 and y = 9. The options provided are a) 2736, b) 660, c) 306, and d) 2322.

In the second question, we are asked to use the formula C = (F - 32) to convert 104°F to its equivalent temperature on the Celsius scale. The options provided are a) 40°C, b) 76°C, c) 8°C, and d) 130°C.

For the first question, we substitute the given values into the expression 8x² + 2y:

8(6)² + 2(9) = 288 + 18 = 306.

Therefore, the correct answer is c) 306.

For the second question, we use the given formula C = (F - 32) and substitute F = 104:

C = (104 - 32) = 72.

Therefore, the equivalent temperature of 104°F on the Celsius scale is 72°C.

The correct answer is not among the options provided, as none of the options matches the calculated value of 72°C.

To learn more about algebraic click here:

brainly.com/question/29131718

#SPJ11


Related Questions

Find an equation of the tangent plane and a set of symmetric equations for the normal line to z = ye2xy at the point (0,2,2). Let f(x, y) = sin x²y³. (a) Find the gradient of ƒ(x,y) at (‚ñ). (b) Find the maximum value of the directional derivative of f(x,y) at ‚n).

Answers

To find the equation of the tangent plane and the set of symmetric equations for the normal line to z = ye^(2xy) at the point (0,2,2), we first calculate the gradient of the function f(x,y) = sin(x^2y^3) at the point (x,y).

Then, we use the gradient to determine the equation of the tangent plane. For the normal line, we use the gradient to find the direction of the line and combine it with the given point to obtain the symmetric equations.

(a) To find the gradient of f(x,y) at (x,y), we compute the partial derivatives with respect to x and y and express them as a vector:

∇f(x,y) = (∂f/∂x, ∂f/∂y) = (2xy^3cos(x^2y^3), 3x^2y^2cos(x^2y^3))

(b) The directional derivative of f(x,y) in the direction of a unit vector u is given by the dot product of the gradient and u, i.e., D_u f(x,y) = ∇f(x,y)·u. Since the maximum directional derivative occurs when u is parallel to the gradient, we need to find the unit vector in the direction of the gradient. We normalize the gradient vector ∇f(x,y) to obtain u = (∇f(x,y))/|∇f(x,y)|. Evaluating the directional derivative at the point (x,y) gives the maximum value.

For the tangent plane to z = ye^(2xy), the equation is given by z - z_0 = ∇f(x_0,y_0)·(x-x_0,y-y_0), where (x_0,y_0,z_0) is the given point. Plugging in (0,2,2) and the previously calculated gradient, we can simplify the equation to obtain the tangent plane equation.

For the normal line, we use the point (0,2,2) as the starting point and the direction vector u = (∇f(0,2))/|∇f(0,2)|. The symmetric equations for the line are then x = x_0 + tu, y = y_0 + tu, and z = z_0 + tu, where (x_0,y_0,z_0) is the given point and t is a parameter.

To learn more about tangent click here:

brainly.com/question/10053881

#SPJ11








What are the hypotheses that must be established in a statistical test? (A) variance and sample mean (B) Interval estimation and point estimation C Mean and Proportions D Alternate and null

Answers

The hypotheses that must be established in a statistical test are the alternate hypothesis and the null hypothesis. The correct option is (D) Alternate and null.

The alternate hypothesis (H₁) represents the claim or assertion that the researcher wants to investigate or prove. It states that there is a significant difference or relationship between variables. On the other hand, the null hypothesis (H₀) is the opposite of the alternate hypothesis and assumes that there is no significant difference or relationship between variables.

These hypotheses are essential in statistical testing as they provide a framework for conducting hypothesis testing and making conclusions based on the observed data. The statistical test is performed to determine whether there is enough evidence to reject the null hypothesis in favor of the alternate hypothesis.

To know more about hypothesis testing click here: brainly.com/question/17099835

#SPJ11




Use Laplace transforms to solve the differential equation d²0 de df² +8- + 160 = sin (21) dt given that and its derivative are zero at t = 0. 0=

Answers

To solve the given differential equation using Laplace transforms, we will denote the Laplace transform of a function f(t) as F(s), where s is the complex variable. We'll use the notation L{f(t)} = F(s).

Let's start by taking the Laplace transform of both sides of the differential equation:

L{d²θ/dt²} + 8L{dθ/dt} + 160L{θ} = L{sin(2t)}

Using the properties of Laplace transforms and the table of Laplace transforms, we can find the Laplace transforms of the derivatives and the sine function:

s²F(s) - sf(0) - f'(0) + 8(sF(s) - θ(0)) + 160F(s) = 2/(s² + 4)

Given that θ(0) = 0 and θ'(0) = 0, the equation simplifies to:

s²F(s) + 8sF(s) + 160F(s) = 2/(s² + 4)

Now, we can combine the terms involving F(s):

(s² + 8s + 160)F(s) = 2/(s² + 4)

Dividing both sides by (s² + 8s + 160), we get:

F(s) = 2/(s² + 4)(s² + 8s + 160)

Now, we need to decompose the fraction on the right-hand side into partial fractions. We can factor the denominator:

s² + 4 = (s + 2i)(s - 2i)

s² + 8s + 160 = (s + 4 + 4i)(s + 4 - 4i)

Therefore, we can express F(s) as:

F(s) = A/(s + 2i) + B/(s - 2i) + C/(s + 4 + 4i) + D/(s + 4 - 4i)

Multiplying both sides by the common denominator, we have:

2 = A(s - 2i)(s + 4 + 4i) + B(s + 2i)(s + 4 - 4i) + C(s - 2i)(s + 4 - 4i) + D(s - 2i)(s + 4 + 4i)

To find the values of A, B, C, and D, we can equate the coefficients of the corresponding terms on both sides of the equation. This will involve expanding the right-hand side, collecting like terms, and comparing coefficients.

After determining the values of A, B, C, and D, we can find the inverse Laplace transform of F(s) to obtain the solution θ(t) in the time domain.

To know more about coefficients visit-

brainly.com/question/14702232

#SPJ11

Match the following to their correct description."
f(x) + 4
f(x) - 4
f(x-4)
f (x + 4)
DRAG & DROP THE ANSWER
The graph is shifted four units to the right of f (x)
The graph is shifted four units to the left of f (x)
The graph is shifted four above f (x)
The graph is shifted four units below f (x)


PLEASE HELPP!!

Answers

f(x) + 4: The graph is shifted four units above f(x).

f(x) - 4: The graph is shifted four units below f(x).

f(x-4): The graph is shifted four units to the left of f(x).

f(x + 4): The graph is shifted four units to the right of f(x).

Graph transformation is the process by which a graph is modified to give a variation of the proceeding graph.

Translating a graph is equivalent to shifting the base graph up or down in the direction of the y-axis

f(x) + 4

The graph is shifted four units above f(x).

f(x) - 4

The graph is shifted four units below f(x).

f(x-4)

The graph is shifted four units to the left of f(x).

f(x + 4)

The graph is shifted four units to the right of f(x).

To learn more on Graph click:

https://brainly.com/question/17267403

#SPJ1








(11) (Normal Probabilities) Suppose X is normally distributed with a mean of u - 11.5 and a standard deviation of o = 2. Find the probability of X > 15.14. Show your work.

Answers

The probability of X > 15.14 is found by calculating the area under the normal distribution curve to the right of 15.14.

First, we standardize the value of 15.14 using the formula:

Z = (X - u) / o

where X is the value we want to standardize, u is the mean, o is the standard deviation, and Z is the standardized value.

Substituting the given values, we have:

Z = (15.14 - (u - 11.5)) / 2

Simplifying further:

Z = (15.14 + 11.5 - u) / 2

Now, we can look up the probability corresponding to this standardized value of Z in the standard normal distribution table or use a calculator. The probability obtained represents the area to the right of 15.14 under the standard normal distribution curve.

In summary, to find the probability of X > 15.14, we need to standardize the value using the given mean and standard deviation, and then look up the corresponding probability from the standard normal distribution table or use a calculator.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Consider the following.
w = xy cos z, x = t₁ y = t³, z = arccos t
(a) Find dw/dt by using the appropriate Chain Rule. Dw/dt =
(b) Find dw/dt by converting w to a function of t before differentiating. Dw/dt=

Answers

The value of dw/dt is (3t⁴ - t¹)√(1 - t²) / t².

Given: w = xy cos z, x = t₁ y = t³, z = arccos t.

(a) Find dw/dt by using the appropriate Chain Rule.

To find dw/dt by using the appropriate chain rule, we have: dw/dt = (∂w/∂x) (dx/dt) + (∂w/∂y) (dy/dt) + (∂w/∂z) (dz/dt)

Since x = t₁ and y = t³:dx/dt = dt₁/dt = 0 (since t₁ is a constant)y/dt = 3t² Now, let's calculate ∂w/∂x, ∂w/∂y, and ∂w/∂z separately. First, we calculate w in terms of x, y, and z as: w = (t₁)(t³)cos(arccos(t)) = t₁t³ √(1 - t²)

Now, we can find ∂w/∂x as:∂w/∂x = y cos z = (t³) cos(arccos(t)) = t³t₁(√(1 - t²)) Next, we find ∂w/∂y as:∂w/∂y = x cos z = (t₁)(√(1 - t²))(t³) Finally, we find ∂w/∂z as:∂w/∂z = -xy sin z = -t₁t³ sin(arccos(t)) = -t₁t³√(1 - t²) sin(arccos(t))Differentiating z = arccos t gives:dz/dt = -1/√(1 - t²)dw/dt = (∂w/∂x) (dx/dt) + (∂w/∂y) (dy/dt) + (∂w/∂z) (dz/dt) = t³t₁(√(1 - t²)) (0) + (t₁)(√(1 - t²))(3t²) + (-t₁t³√(1 - t²))( -1/√(1 - t²))dw/dt = (t₁)(√(1 - t²))(3t²) + t₁t³√(1 - t²) / √(1 - t²)dw/dt = (3t¹ t¹ + t¹ t³) √(1 - t²) / √(1 - t²)dw/dt = (3t¹ t¹ + t¹ t³) = 4t⁴

(b) Find dw/dt by converting w to a function of t before differentiating. The given equations are: x = t₁ y = t³, z = arccos tand w = xy cos z Rewriting x in terms of t, we have: x = t₁ = 1t⁻¹ Rewriting y in terms of t, we have:y = t³Rewriting z in terms of t, we have: z = arccos t So, w = xy cos z= t¹ (t³) cos(arccos t) Substituting cos(arccos t) = √(1 - t²) in w, we get: w = t¹ (t³) √(1 - t²)So, dw/dt = (w)′ = [(t¹)′(t³) √(1 - t²) + t¹(3t²)(√(1 - t²))](Chain Rule)= (1t⁻¹)(t³)√(1 - t²) + t¹(3t²)√(1 - t²)= (3t⁴ - t¹)√(1 - t²) / t².

To know more about Chain Rule visit:

https://brainly.com/question/31585086

#SPJ11

(a) The dw/dt by using Chain Rule is: dw/dt = 3t²x cos z + xy sin z / √(1 - t²).

(b) The dw/dt by converting w to a function is:  dw/dt = 2t₁t³ + 3t₁t²

Understanding Chain Rule

(a) To find dw/dt using the Chain Rule, we need to consider the derivatives of each variable with respect to t and then apply the chain rule.

Given:

w = xy cos z,

x = t₁,

y = t³,

z = arccos t.

Let's find the derivative dw/dt using the Chain Rule:

dw/dt = dw/dx * dx/dt + dw/dy * dy/dt + dw/dz * dz/dt

First, let's find the partial derivatives:

dw/dx = y cos z,

dw/dy = x cos z,

dw/dz = -xy sin z.

Now, let's find the derivatives of x, y, and z with respect to t:

dx/dt = d(t₁)/dt = 0 (since t₁ is a constant),

dy/dt = d(t³)/dt = 3t²,

dz/dt = d(arccos t)/dt.

To find dz/dt, we can differentiate arccos t with respect to t. The derivative of arccos t with respect to t is -1/sqrt(1 - t²).

Therefore, dz/dt = -1/√(1 - t²).

Now, let's substitute the derivatives back into the chain rule equation:

dw/dt = (y cos z) * 0 + (x cos z) * (3t²) + (-xy sin z) * (-1/√(1 - t²))

      = 3t²x cos z + xy sin z / √(1 - t²).

(b) To find dw/dt by converting w to a function of t before differentiating, we substitute the given expressions for x, y, and z into the function w = xy cos z:

w = (t₁)(t³) cos(arccos t)

 = t₁t³ cos(arccos t)

 = t₁t³t.

Now, we can differentiate w = t₁t³t with respect to t directly:

dw/dt = d(t₁t³t)/dt

      = t₁t³ + 3t₁t² + t₁t³

      = 2t₁t³ + 3t₁t².

Therefore, dw/dt = 2t₁t³ + 3t₁t².

Learn more about chain rule here:

https://brainly.com/question/30396691

#SPJ4

Hey could u help me thankss

Answers

Answer:

B) 146 ≥ 9c+10

Step-by-step explanation:

$9 per yoga class can be represented with 9c, and then we have 9c+10 to represent the additional $10 yoga mat bought.

Since she can't use more than $146, then we have the inequality 9c+10≤146, which is the same as 146≥9c+10, so option B is correct.

a rectangle has the length of x 8 and a width of 10 - x. determine the x value that produces the maximum area. state the domain and range.

Answers

The value of x that produces the maximum area of the rectangle is 17. The domain of x is 0 ≤ x ≤ 10. The range of the area function is 0 ≤ A ≤ 80.

The area A of a rectangle is given by the product of its length and width, A = length * width. In this case, the length is x + 8 and the width is 10 - x. Thus, the area function can be expressed as A = (x + 8)(10 - x).

To find the maximum area, we can take the derivative of the area function with respect to x, set it equal to zero, and solve for x. Differentiating A with respect to x, we get dA/dx = -2x + 18.

Setting -2x + 18 = 0 and solving for x, we find x = 9. This critical point represents the value of x that maximizes the area of the rectangle.

The domain of x in this problem is restricted by the constraints of the problem, which state that the width must be positive. Since the width is 10 - x, it follows that x must be less than 10 to ensure a positive width. Therefore, the domain is x < 10.

The range of the maximum area will be the corresponding values of the area function when x = 9. Plugging x = 9 into the area function, we find A = (9 + 8)(10 - 9) = 17. Hence, the range is the single value of the maximum area, which is 17.

Learn more about rectangle here:

https://brainly.com/question/15019502

#SPJ11

The Mosteler formula for calculating adult body surface area is B = √hw/3131i where B is an individual's body surface area in square meters, h is the individual's height individual who is 68 inches tall and who weighs 138 pounds

Answers

The Mosteler formula is used to calculate an adult's body surface area (BSA) based on their height and weight. In this case, we have an individual who is 68 inches tall and weighs 138 pounds. Using the formula B = √hw/3131i, we can determine their BSA which gives us BSA of approximately 0.031 square meters.

The Mosteler formula, B = √hw/3131i, calculates an individual's body surface area (BSA) based on their height (h) and weight (w). In this case, the individual is 68 inches tall and weighs 138 pounds. To calculate their BSA, we substitute these values into the formula: B = √(68 * 138) / 3131.

First, we multiply the height (68 inches) by the weight (138 pounds), resulting in 9384. Then, we take the square root of this product, which gives us approximately 96.85. Finally, we divide this value by 3131, yielding an estimated BSA of approximately 0.031 square meters.

The BSA calculation is useful in various medical applications, such as determining drug dosages, assessing body composition, and evaluating metabolic rates. It provides a standardized measurement that takes into account an individual's body size, which can be crucial in medical treatments and research.

learn more about Mosteler formula here: brainly.com/question/30003653

#SPJ11

For the following set of data, find the population standard deviation, to the nearest hundredth.


Data: 3,5,6,8,9,12,16
Frequency: 5,7,2,1,3,6,1

please answer asap!!

Answers

The population standard deviation for the given data set is approximately 2.98.

To find the population standard deviation, we need to first calculate the population variance and then take the square root of the variance.

Calculate the population variance.

First, we need to find the mean of the data set.

To do this, we sum up the product of each data value and its corresponding frequency, and then divide by the sum of the frequencies.

Mean (μ) = (35 + 57 + 62 + 81 + 93 + 126 + 16*1) / (5 + 7 + 2 + 1 + 3 + 6 + 1) = 10.79

Next, we calculate the squared deviations of each data value from the mean, multiplied by their respective frequencies.

We sum up these squared deviations.

Sum of squared deviations [tex](SS) = (5\times(3-10.79)^2 + 7\times(5-10.79)^2 + 2\times(6-10.79)^2 + 1\times(8-10.79)^2 + 3\times(9-10.79)^2 + 6\times(12-10.79)^2 + 1\times(16-10.79)^2) = 221.92[/tex]

Now, we calculate the population variance by dividing the sum of squared deviations by the total number of observations.

Population variance [tex](\sigma^2) = SS / (5 + 7 + 2 + 1 + 3 + 6 + 1) = 221.92 / 25 = 8.88[/tex]

Calculate the population standard deviation.

Finally, we take the square root of the population variance to get the population standard deviation.

Population standard deviation (σ) ≈ √8.88 ≈ 2.98 (rounded to the nearest hundredth)

For similar question on population standard deviation.

https://brainly.com/question/4124942  

#SPJ8

Find the coordinate vector of p relative to the basis S = {P₁, P2, P3} for P₂. p = 12 - 10x + 8x²; P₁ = 6, P₂ = 2x, P3 = 4x².

Answers

The coordinate vector of p relative to the basis S for P₂ is [2, -5, 2].

To find the coordinate vector of p relative to the basis S = {P₁, P₂, P₃} for P₂, we need to express p as a linear combination of the basis vectors and then determine the coefficients.

Given:

p = 12 - 10x + 8x²

P₁ = 6

P₂ = 2x

P₃ = 4x²

We want to find the coefficients a, b, c such that:

p = aP₁ + bP₂ + cP₃

Substituting the given expressions for P₁, P₂, and P₃, we have:

12 - 10x + 8x² = a(6) + b(2x) + c(4x²)

12 - 10x + 8x² = 6a + 2bx + 4cx²

To determine the coefficients, we can equate the corresponding terms on both sides of the equation.

For the constant term:

12 = 6a

For the linear term:

-10x = 2bx

-10 = 2b

For the quadratic term:

8x² = 4cx²

8 = 4c

Solving these equations, we find:

a = 2

b = -5

c = 2

Know more about coordinate here:

https://brainly.com/question/22261383

#SPJ11

In survey of 3005 randomly selected adults aged 57 through 85 years old, it was found that 2455 used at least one prescribed medication. a) Find the sample proportion p-hat as a percentage to 1 decimal place. b) Find the 90% confidence interval that estimates the percentage of adults aged 57 through 85 who use at least one prescribed medication. Answer as percentages to 1 decimal place. to

Answers

a) To find the sample proportion, we divide the number of adults who use at least one prescribed medication (2455) by the total number of adults surveyed (3005):

Sample proportion (p-hat) = 2455/3005 ≈ 0.816 (rounded to three decimal places)

To express it as a percentage, we multiply by 100:

Sample proportion (p-hat) = 0.816 * 100 ≈ 81.6% (rounded to one decimal place)

Therefore, the sample proportion is approximately 81.6%.

b) To find the 90% confidence interval, we can use the formula for the confidence interval of a proportion. The formula is:

CI = p-hat ± z * sqrt((p-hat * (1 - p-hat)) / n)

Where:

p-hat is the sample proportion,

z is the z-score corresponding to the desired confidence level (90% in this case),

sqrt represents the square root,

and n is the sample size.

Since we want a 90% confidence interval, the z-score corresponding to a 90% confidence level is approximately 1.645.

Plugging in the values:

CI = 0.816 ± 1.645 * sqrt((0.816 * (1 - 0.816)) / 3005)

Calculating the expression inside the square root:

sqrt((0.816 * (1 - 0.816)) / 3005) ≈ 0.007

Plugging it back into the confidence interval formula:

CI = 0.816 ± 1.645 * 0.007

Calculating the product:

1.645 * 0.007 ≈ 0.011

Finally, the confidence interval is:

CI = 0.816 ± 0.011

Expressing it as percentages:

Lower bound = (0.816 - 0.011) * 100 ≈ 80.5%

Upper bound = (0.816 + 0.011) * 100 ≈ 82.7%

Therefore, the 90% confidence interval that estimates the percentage of adults aged 57 through 85 who use at least one prescribed medication is approximately 80.5% to 82.7%.

Learn more about statistics here:

https://brainly.com/question/29765147

#SPJ11

Caroline wants to buy 100 g of spice mix from a British or French website.

The conversion rate is €1 = £0.85

What is the price, including delivery costs, that Caroline would pay for the spice mix from the cheaper website? Give your answer in pounds (£).

British website: £0.90 for 25 g Free delivery.
French website: €1.20 for 50 g €0.80 delivery per order.​

Answers

The website which is cheaper for Caroline to buy the spice mix is French website.

Given data ,

Let's calculate the total cost for Caroline from both websites and determine which one is cheaper.

British website:

Price for 100 g = (£0.90 / 25 g) * 100 g = £3.60

Since the British website offers free delivery, the total cost remains £3.60.

French website:

Price for 100 g = (€1.20 / 50 g) * 100 g = €2.40

Delivery cost = €0.80

On simplifying the equation , we get

To convert the price and delivery cost to pounds, we'll use the conversion rate: €1 = £0.85.

Price in pounds = €2.40 * £0.85 = £2.04

Delivery cost in pounds = €0.80 * £0.85 = £0.68

Total cost = Price in pounds + Delivery cost = £2.04 + £0.68 = £2.72

Comparing the total costs:

British website: £3.60

French website: £2.72

Hence , Caroline would pay £2.72 for the spice mix from the cheaper website, which is the French website.

To learn more about equations click :

https://brainly.com/question/19297665

#SPJ1

a regular hexagon abcdef is inscribed in circle o with radius 12 cm the hexagon is circumscribed about another circle also have o as its center

Answers

A regular hexagon ABCDEF is inscribed in circle O with a radius of 12 cm. The hexagon is circumscribed about another circle also having O as its center. We are supposed to find the main answer for the problem.

Let's get into the solution.Problem Analysis:We have to find out the radius of the circle circumscribed around the hexagon ABCDEF.Step-by-Step explanation:Here,The radius of the circle inscribed in a regular hexagon ABCDEF is given by r = a /2 × √3r = 12 / 2 × √3 = 6√3 cm.  ...[Equation 1]

The radius of the circle circumscribed around a regular hexagon ABCDEF is given by R = aR = 2 × r = 2 × 6√3 = 12√3 cm. ...[Equation 2]Hence, the radius of the circle circumscribed around the regular hexagon ABCDEF is 12√3 cm. Therefore, the main answer is 12√3 cm.

Therefore, we can conclude that the radius of the circle circumscribed around the regular hexagon ABCDEF is 12√3 cm and the long answer with explanation is as follows:r = a /2 × √3R = 2 × r = 2 × 6√3 = 12√3 cm.

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

Central Mass Ambulance Service can purchase a new ambulance for $200,000 that will provide an annual net cash flow of $50,000 per year for five years. The salvage value of the ambulance will be $25,000. Assume the ambulance is sold at the end of year 5. Calculate the NPV of the ambulance if the required rate of return is 9%. Round your answer to the nearest $1.) A) $(10,731) B) $10,731 C) $(5,517) D) $5,517 Focus mglish (United States)

Answers

the NPV of the ambulance, rounded to the nearest dollar, is approximately $10,731. Option b

To calculate the NPV (Net Present Value) of the ambulance, we need to determine the present value of the net cash flows over the five-year period.

The formula for calculating NPV is:

NPV = (Cash Flow / (1 + r)^t) - Initial Investment

Where:

Cash Flow is the net cash flow in each period

r is the required rate of return

t is the time period

Initial Investment is the initial cost of the investment

In this case, the net cash flow per year is $50,000, the required rate of return is 9%, and the initial cost of the ambulance is $200,000.

Using the formula, we calculate the present value of each year's cash flow and subtract the initial investment:

NPV =[tex](50,000 / (1 + 0.09)^1) + (50,000 / (1 + 0.09)^2) + (50,000 / (1 + 0.09)^3) + (50,000 / (1 + 0.09)^4) + (75,000 / (1 + 0.09)^5) - 200,000[/tex]

Simplifying the equation, we find:

NPV ≈ 10,731

learn more about Net Present Value here:

https://brainly.com/question/31984281

#SPJ11

A supervisor at an electric bulb factory examines bulbs
produced in the factory for defects. She usually finds that there
are 14 defective bulbs in a week (7 days).
What is the probability that ther

Answers

The probability that there will be less than or equal to 2 defective bulbs in a day is 0.6767 or 67.67%.

The supervisor at an electric bulb factory usually finds that there are 14 defective bulbs in a week (7 days). The supervisor is interested in knowing the probability that there will be less than or equal to 2 defective bulbs in a day. Using the Poisson distribution, we can calculate this probability.

The formula for the Poisson distribution is P(x) = (e^ᵃ (a=-λ) * λˣ) / x!,

where x is the number of events, e is the constant 2.71828, λ is the mean number of events, and x! is the factorial of x. In this case, λ = 14/7 = 2, since there are 14 defective bulbs in a week.

Plugging in x = 0, 1, or 2, we get P(0) = 0.1353, P(1) = 0.2707, and P(2) = 0.2707. Therefore, the probability that there will be less than or equal to 2 defective bulbs in a day is 0.6767 or 67.67%.

The probability that there will be less than or equal to 2 defective bulbs in a day is 0.6767 or 67.67%.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Find the value of z that corresponds to the following: a) Area = 0.1210 b) Area = 0.9898 c) 45th percentile

Answers

a) The value of z corresponding to an area of 0.1210 can be found using statistical tables or a statistical calculator.

b) Similarly, the value of z corresponding to an area of 0.9898 can be obtained using statistical tables or a statistical calculator.

c) To find the value of z at the 45th percentile, we can use the standard normal distribution table or a statistical calculator.

a) To find the value of z corresponding to an area of 0.1210, you can use a standard normal distribution table or a statistical calculator. By looking up the area of 0.1210 in the table, you can determine the corresponding z-value. For example, if you find that the z-value for an area of 0.1210 is -1.15, then -1.15 is the value of z corresponding to the given area.

b) Similarly, to find the value of z corresponding to an area of 0.9898, you can refer to a standard normal distribution table or use a statistical calculator. Find the z-value that corresponds to the area of 0.9898. For instance, if the z-value for an area of 0.9898 is 2.32, then 2.32 is the value of z corresponding to the given area.

c) To find the value of z at the 45th percentile, you can use a standard normal distribution table or a statistical calculator. The 45th percentile corresponds to an area of 0.4500. By finding the z-value for an area of 0.4500, you can determine the value of z at the 45th percentile. For example, if the z-value for an area of 0.4500 is 0.125, then 0.125 is the value of z at the 45th percentile.

To learn more about  area Click Here:  brainly.com/question/22469440

#SPJ11

Are the following question considered statistical questions?
1. How has the number of live births changed over the last 30 years?
2. How many votes did the candidate that won Student Body president receive?
3. How do heights of basketball players from two rivals high schools compare?

Answers

Yes, the following questions can be considered statistical questions: How has the number of live births changed over the last 30 years?.

This is a statistical question as it involves collecting and analyzing data over a specific time period to understand the trend and changes in the number of live births. How many votes did the candidate that won Student Body president receive? This question is not necessarily a statistical question as it seeks a specific numerical value rather than exploring patterns, trends, or relationships in data. How do heights of basketball players from two rival high schools compare?

This is a statistical question as it involves comparing and analyzing data (heights of basketball players) from two different groups (two rival high schools) to understand the relationship or difference between them.

To learn more about  statistical questions click here: brainly.com/question/29257078

#SPJ11

The researchers would like a power of at least 0.9. The desired effect size is calculated and named as car.f2. The results of the power analysis are as follows: pwr.f2.test(u=1, v=length (cars $speed) -2, f2=car.£2, sig.level=0.05, power= ) Multiple regression power calculation u = 1 v = 48 f2 = 1 sig.level = 0.05 power = 0.9999997 The researchers set an effect size of 1, which equates to a minimum detectable R2 value of 48 With their sample size and given the effect size and significance level, the calculated power is >0.9so there is sufficient power to detect a true null hypothesis

Answers

The statement describes a situation where the researchers conducted a power analysis to determine the statistical power of their study. The power analysis is performed to assess the ability of the study to detect a significant effect, given a certain effect size, sample size, and significance level.

In this case, the researchers set an effect size of 1, which corresponds to a minimum detectable R2 value of 48. They also specified a significance level of 0.05. Based on these parameters and the calculated power of 0.9999997, it can be concluded that the study has sufficient power (power > 0.9) to detect a true null hypothesis. This means that the study is highly likely to detect a significant effect if it exists, providing strong evidence to reject the null hypothesis.

Know more about null hypothesis here:

https://brainly.com/question/30821298

#SPJ11

Determine whether the logic used in each question is inductive reasoning or deductive reasoning. ai.) Everyone in the Family Madrigal has a special gift. Luisa is in the Family Madrigal. Therefore, Luisa has a special gift. aii.) Every dog I have seen is covered in fur. Barky is a dog. Therefore, Barky is covered in fur. 1b.) Determine whether the given sequence is arithmetic or geometric. Then identify the indicated term. The 32th term of: -14, -8, -2, 4, ... 1c.) Given the sequence: MATHMATHMATHMA.... If this pattern continues, what letter will be in the 2022nd position?

Answers

ai.) Deductive reasoning is used because the conclusion is derived from a general statement and a specific example that fits that statement.

aii.), The reasoning is also deductive because the conclusion is drawn from a general statement and a specific instance that satisfies that statement.

1b.) The sequence is arithmetic, and the indicated term is the 32nd term.

1c.) The letter 'H' will be in the 2022nd position based on the repeating pattern.

In question ai.), the logic used is deductive reasoning. It starts with the general statement that "Everyone in the Family Madrigal has a special gift." Then, it provides a specific example that Luisa is in the Family Madrigal. From these premises, the conclusion is made that "Luisa has a special gift." The reasoning follows a logical structure where the conclusion is inferred from the general statement and the specific example.

Similarly, in question aii.), deductive reasoning is employed. The general statement is that "Every dog I have seen is covered in fur." It is then given that Barky is a dog, and based on the general statement, it can be concluded that "Barky is covered in fur." The conclusion is derived from the general statement and the specific instance that fits that statement.

Moving to question 1b.), we need to determine whether the given sequence is arithmetic or geometric. The sequence -14, -8, -2, 4 follows an arithmetic pattern because there is a constant difference of 6 between consecutive terms. To find the 32nd term, we can use the arithmetic sequence formula:

term = first term + (n - 1) * common difference

Plugging in the values, we have:

term = -14 + (32 - 1) * 6 = -14 + 186 = 172

Therefore, the 32nd term of the sequence is 172.

In question 1c.), the given sequence "MATHMATHMATHMA..." repeats the pattern "MATH." As each "MATH" segment contains four letters, we can divide 2022 by 4 to find out how many complete repetitions of "MATH" occur. 2022 divided by 4 equals 505 remainder 2. Since the pattern repeats in cycles of four letters, the 2022nd position will fall within the third letter of the "MATH" segment, which is 'H.' Hence, the letter 'H' will be in the 2022nd position.

Learn more about sequence here:

https://brainly.com/question/30262438

#SPJ11








The cost of an item is $138. The product was marked up by 20%. Find the selling price of the item.

Answers

To find the selling price of an item that was marked up by 20% from its cost, we can calculate the markup amount and then add it to the cost.

To determine the selling price of the item, we need to consider the cost and the markup percentage. The markup percentage represents the increase in price from the cost.

Given that the cost of the item is $138 and the item was marked up by 20%, we can calculate the markup amount. The markup amount is obtained by multiplying the cost by the markup percentage:

Markup amount = Cost * Markup percentage

= $138 * 20% = $27.6.

To find the selling price, we add the markup amount to the cost:

Selling price = Cost + Markup amount

= $138 + $27.6 = $165.6.

Therefore, the selling price of the item is $165.6.

To determine the selling price of an item that was marked up by 20%, we calculate the markup amount by multiplying the cost by the markup percentage. Then, we add the markup amount to the cost to obtain the selling price. In this case, the selling price is $165.6.

To learn more about selling price click here:

brainly.com/question/29065536

#SPJ11

a soda can has a radius of 3 cm and a height of 12 cm as shown which sets of measurements for a few radius and height could be used to make a cylinder with a volume that is 8 times greater than this can of soda?

Answers

Therefore, another set of values for r and h that could be used to make a cylinder with a volume that is 8 times greater than the given soda can are r = 6 cm and h = 24 cm

The given soda can has a radius of 3 cm and a height of 12 cm. The formula for the volume of a cylinder is V = πr²h where r is the radius and h is the height of the cylinder.

To find the radius and height of a cylinder that has a volume 8 times greater than the given soda can, we need to multiply the volume of the soda can by 8, and then solve for the radius and height of the cylinder.

Volume of the given soda can = π(3 cm)²(12 cm) = 339.292 cm³

Volume of the cylinder with 8 times the volume of the soda can = 8 × 339.292 cm³ = 2714.336 cm³

Now, we can substitute the values of V and r²h into the formula V = πr²h and simplify it to solve for the possible values of r and h.πr²h = 2714.336 cm³

Substituting the value of V and r²h, we get:π( r²)(h) = 2714.336

Dividing both sides by π, we get:r²h = 864 cm³

Solving for r and h using the given values:

r = 3 cm

h = 12 cm

Substituting these values in the equation:

r²h = 3² × 12 = 108 cm³

Since r²h = 864 cm³, we can find another set of values for r and h by dividing 864 cm³ by 108 cm³ and multiplying both r and h by that same factor.864 ÷ 108 = 8

Multiplying both r and h by 8, we get:

r = 3 cm × 2 = 6 cm

h = 12 cm × 2 = 24 cm

Therefore, another set of values for r and h that could be used to make a cylinder with a volume that is 8 times greater than the given soda can are r = 6 cm and h = 24 cm

To know more about measurements  visit:

https://brainly.com/question/2107310

#SPJ11

If c = 209, ∠A = 79° and ∠B = 47°, b = ; Assume ∠A is opposite side a, ∠B is opposite side b, and ∠C is opposite side c.

Answers

In a triangle with side lengths a, b, and c, and corresponding angles A, B, and C, we are given the value of c (209), angle A (79°), and angle B (47°). We need to find the length of side b.

To find side b, we can use the Law of Sines, which states that the ratio of the length of a side to the sine of its opposite angle is constant for all sides and angles in a triangle. Applying the Law of Sines, we have: b/sin(B) = c/sin(C). Substituting the given values, we get: b/sin(47°) = 209/sin(180° - 79° - 47°). Simplifying and solving for b, we find the length of side b.

To know more about triangles here : brainly.com/question/2773823

#SPJ11

A poll by a reputable research center asked, "If you won 10 million dollars in the lottery, would you continue to work or stop working? Of the 1130 adults from a certain country surveyed, 723 said that they would continue working. Use the one proportion plus-four z-interval procedure to obtain a 99% confidence interval for the proportion of all adults in the country who would continue working if they won 10 million dollars in the lottery, Interpret your results.

Answers

To estimate the proportion of adults who would continue working if they won 10 million dollars in the lottery. The interval ranged from 0.605 to 0.711.

In the survey, 723 out of 1130 adults indicated that they would continue working even after winning the lottery. To estimate the true proportion for the entire adult population, the one proportion plus-four z-interval procedure was applied. This method assumes that the sample proportion follows a normal distribution.

To calculate the confidence interval, the sample proportion (p) is determined by dividing the number of adults who would continue working (723) by the total sample size (1130). The standard error (SE) is calculated as the square root of (p * (1 - p)) divided by the square root of the sample size. The z-value for a 99% confidence level is approximately 2.576.

Using these values, the lower bound of the confidence interval is calculated as p minus 2.576 times the standard error, and the upper bound is calculated as p plus 2.576 times the standard error. The resulting confidence interval for the proportion of adults who would continue working if they won 10 million dollars in the lottery is 0.605 to 0.711.

Interpreting the results, we can say with 99% confidence that the true proportion of all adults in the country who would continue working after winning the lottery falls within this range. Therefore, based on this survey data, it is likely that a majority of adults in the country would choose to continue working even if they won a significant amount of money in the lottery. However, it is important to note that this estimate is subject to sampling variability and assumes the survey was conducted properly and represents the adult population accurately.

Learn more about proportion here:

https://brainly.com/question/31548894

#SPJ11

Valentina boards an elevator in the lobby that is headed up at 610 feet per minute. Meanwhile, 1,500 feet above, Owen boards an adjacent elevator headed down at 620 feet per minute. How long will it be before Valentina and Owen pass each other?

Answers

The time it will take for Valentina and Owen to pass each other is approximately 1.22 minutes.

Valentina boards an elevator in the lobby that is headed up at 610 feet per minute. Meanwhile, 1,500 feet above, Owen boards an adjacent elevator headed down at 620 feet per minute.

How long will it be before Valentina and Owen pass each other?

When two objects are moving in opposite directions, the distance between them is decreasing. In this case, Valentina is heading up, while Owen is heading down.

As a result, the distance between the two elevators is decreasing at a rate of (610 + 620) feet per minute or 1,230 feet per minute. If we let t be the amount of time it takes for Valentina and Owen to pass each other, then the distance between them will be 1500 + (610t) + (620t).

Therefore, 1500 + (610t) + (620t) = 0 since Valentina and Owen are passing each other.

Solving for t gives the following:1500 + 1230t = 0t = -1500/1230t ≈ -1.22 minutes

To learn more about : time

https://brainly.com/question/26862717

#SPJ8

What would the process be to solve this quadratic?

Answers

Answer:

(x^2 - 2x)^2 - 11(x^2 - 2x) + 24 = 0

(x^2 - 2x - 3)(x^2 - 2x - 8) = 0

x^2 - 2x - 3 = 0 or x^2 - 2x - 8 = 0

(x + 1)(x - 3) = 0 or (x + 2)(x - 4) = 0

x = -2, -1, 3, 4

A recent survey showed that in a sample of 100 elementary school teachers, 19 were single. In a sample of 180 high school teachers, 36 were single, is the proportion of high school teachers who were single greater than the proportion of elementary teachers who were single? Use a = 0.05. [Make sure to provide the null and alternative hypotheses, the appropriate test statistic, p-value or critical valecision, and conclusion

Answers

To determine if the proportion of high school teachers who were single is greater than the proportion of elementary school teachers who were single, we can conduct a hypothesis test with a significance level of 0.05.

The null hypothesis states that the proportions are equal, while the alternative hypothesis states that the proportion of high school teachers who were single is greater than the proportion of elementary school teachers who were single. To perform the hypothesis test, we calculate the sample proportions of single teachers in each group and then compute the test statistic, which follows a normal distribution under the null hypothesis. We use the standard error formula to determine the standard deviation of the sampling distribution. With the test statistic, we calculate the p-value, which represents the probability of observing a test statistic as extreme as the one obtained, assuming the null hypothesis is true. By comparing the p-value to the significance level of 0.05, we can make a conclusion regarding the null hypothesis.

In this case, we would use a two-sample z-test for proportions to compare the proportions of single teachers in the elementary and high school categories. The null hypothesis, denoted as H 0, would be that the proportion of single teachers is the same for both groups (p1 = p2), while the alternative hypothesis, denoted as Ha, would be that the proportion of single teachers in the high school group is greater than the proportion in the elementary school group (p2 > p1). We calculate the sample proportions p1 = 19/100 and p2 = 36/180 for the elementary and high school teachers, respectively. The pooled sample proportion pp = (19 + 36) / (100 + 180) is used to estimate the common proportion under the null hypothesis.

Next, we calculate the standard error of the difference in proportions using the formula: SE = sqrt[(pp * (1 - pp) * (1/n1 + 1/n2))] where n1 = 100 and n2 = 180 are the sample sizes. With the standard error, we calculate the test statistic z = (p2 - p1) / SE, which follows a standard normal distribution under the null hypothesis. Finally, we calculate the p-value associated with the obseved test statistic. If the p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that the proportion of high school teachers who are single is indeed greater than the proportion of elementary school teachers who are single. Conversely, if the p-value is greater than 0.05, we fail to reject the null hypothesis and do not have enough evidence to conclude a significant difference in the proportions.

Learn more about null hypothesis here: brainly.com/question/30821298
#SPJ11

Find a formula for the exponential function f(x) = Caˣ passing through the points (-1, 128) and (2, 2) f(x) =

Answers

The exponential function that passes through the points (-1, 128) and (2, 2) is f(x) = 16 * (1/8)^x. To find the formula for the exponential function that passes through the given points (-1, 128) and (2, 2), we can use the general form of an exponential function, f(x) = Caˣ, and substitute the coordinates of the points to solve for the value of C.

Let's substitute the coordinates (-1, 128) and (2, 2) into the equation f(x) = Caˣ:

For the point (-1, 128):

128 = Ca^(-1)

For the point (2, 2):

2 = Ca^2

Now we have a system of equations that we can solve to find the value of C. Dividing the second equation by the first equation, we get:

(2 / 128) = (Ca^2) / (Ca^(-1))

Simplifying the right side of the equation, we have:

(2 / 128) = a^3

Taking the cube root of both sides, we get:

a = (2 / 128)^(1/3) = (1 / 8)

Now that we know the value of a, we can substitute it back into one of the equations (e.g., the first equation) to solve for C:

128 = C(1 / 8)^(-1)

Simplifying, we have:

128 = C * 8

C = 128 / 8 = 16

Therefore, the formula for the exponential function f(x) is f(x) = 16 * (1/8)^x.

To learn more about exponential function, click here:

brainly.com/question/29287497

#SPJ11

During a laboratory experiment the average number of radioactive particles passing through a counter in one millisecond is 6. What is the probability that more than 4 particles enter the counter in a

Answers

The probability that more than 4 particles enter the counter in one millisecond is 0.

Given the average number of radioactive particles passing through a counter in one millisecond is 6.

We need to find the probability that more than 4 particles enter the counter in a millisecond.

This can be solved using Poisson distribution.

Let X be the number of particles entering the counter in one millisecond.

Then X follows a Poisson distribution with parameter λ = 6.

The probability that more than 4 particles enter the counter in one millisecond is given by:

P(X > 4) = 1 - P(X ≤ 4)

The probability of X ≤ 4 can be calculated as follows:

P(X ≤ 4) = e^(-λ) * (λ^0/0!) + e^(-λ) * (λ^1/1!) + e^(-λ) * (λ^2/2!) + e^(-λ) * (λ^3/3!) + e^(-λ) * (λ^4/4!)

On substituting the values of λ and simplifying the expression, we get:

P(X ≤ 4) = 0.219 + 0.657 + 0.197 + 0.049 + 0.012

= 1.134

The probability that more than 4 particles enter the counter in one millisecond is given by:

P(X > 4) = 1 - P(X ≤ 4)

= 1 - 1.134

= -0.134

However, probability cannot be negative.

Therefore, the probability that more than 4 particles enter the counter in one millisecond is 0.

Know more about probability here:

https://brainly.com/question/251701

#SPJ11

What are the names of the verses of the tenth?

Answers

The measure of angles S and T is 63.5°

We have,

The given triangle is an isosceles triangle.

This means,

Two sides are equal.

So,

The angle opposite to the sides is equal.

∠S = ∠T = x

The sum of the angles in the sides of the triangle is 180.

So,

∠S + ∠R + ∠T = 180

2x + 53 = 180

2x = 180 - 53

2x = 127

x = 127/2

x = 63.5

Now,

∠S = ∠T = 63.5

Thus,

The measure of angles S and T is 63.5°

Learn more about triangles here:

https://brainly.com/question/25950519

#SPJ1

Other Questions
Results to a decimal place. Determine the parallel line capacity with the following information. Team A B speed 120 130 Downtime 20% 35% Waste 5% 4% Name each ingeous rock. For each rock explain the indentificationmethods you employed to find out which rock they were. (texture,color, Orgin, etc) how did you know the name of the rock? As a project manager for Acme Blologies, you are starting the Define Scope process. Which of the following is a key input to the process? O A. Project Charter O B. Staffing Management Plan OC Quality Management Plan OD. Risk Management Plan Which is least likely to be considered a project-related incremental cost? Prove that = 2 is the one of th roots algebraic equation |3- 2 1||2 6- 2||1 3 1-| Investigate the consistency of the following eqns 2x-y=k, 2x-ky=1, 2kx-y= 1Solve the follming systems of linear eqne by using i) inverse ii) Cramer's method x-2y=1, 2x+3y+z=7, -x+27=8 Find the values d eigen a eigen vectors of(7 3)(3 -1) After a disastrous blizzard, there was a significant increase in the allele frequency of blue eye color in husky dogs. The frequency of alleles for brown-eyed dogs was 7. 5% and the allele frequency for hazel-eyed dogs was 22. 5% of all alleles for the population. What is the allele frequency percentage for the blue-eyed husky dogs in this population? The first three terms of an arithmetic sequence are u1, 5u1-8, and 3u1+8. U1 is equal to 4. Prove by induction that the sum of the first n terms of the sequence is a square number. Explain in detail the two mistakes (fallacies) that commonly appear during the SSNIP (Small but Significant Nontransitory Increase in Price) test application. Provide a substantive and thoughtful commentary that reflects on the data read about in the 2020 census (the apportionment of House seats in the map) and about the filibuster and why it is so detrimental to the ability of the U.S. Senate to accomplish much. Answer correctly and right. i will venmoUse the following problem statement to answer questions 1-3. A bank wants to invest in five types of loans. To diversify its portfolio and minimize risk, the bank also invests in risk-free securities. Question 16 1 Point $3.), clearly In his book "Life in Management", the late Dr. Ghazi Abdalrahman Al-Qosaibi ( stated that the most effective span of control. This type of span of control is usually associated with a -- organizational height. is a short span; tall B) is a narrow span; tall has a maximum of three to six subordinates; flat D) has a maximum of six to seven subordinates; flat Question 17 1 Point The Deputy Chief Executive faces recurring problems that require a scheduled, frequent and permanent meeting of members from all departments. Which of the following is the most appropriate integration mechanism? A Direct contact. B) Task-force committee. C) Liaison Roles. (D) Cross-functional committee. Question 18 1 Point Lia helps the organization succeed by motivating and inspiring her peers to work together toward team goals. In this case, Lia is known as a(n) A figurehead. B manager. leader. D expert. Question 19 1 Point The model of leadership is based on the premise that effective leaders possess personal qualities or skills that set them apart from ineffective leaders. Tsk-oriented B) Contingency Trait Transformational Question 20 'Empowerment' can help in fulfilling Achievement Power Physiological Self-actualization need in Maslow's Hierarchy of Needs. 1 Point which of the following is the best example of a critical thinking strategy in action? A.After missing the first ten minutes of class, you resolve to print off all of the lecture notes for next time.B.After realizing you watched a full movie every night for the past 5 days, you decide to watch TV shows from now on instead.C.You ask yourself before opening your biology notes, "What did I learn in class, and how does that apply?" An organization is said to have achieved strategic alignment when the priorities and activities of the is function and the strategic direction of the firm are aligned: What is the most important factor that makes it hard to directly study the centre of our own Milky Way galaxy? Select one alternative:O A. The super-hot gas and rapidly moving stars found at the centre of the galaxy move in such complex ways it is difficult to understand what we see.O B. Our view of the galactic centre in visible light is blocked by dark matter in the plane of the galaxy.O C. Light from the galactic centre is absorbed by the super-massive black hole that is found there.O D. The galactic centre is so far away it is difficult to see the details, even in big telescopes.O E. Our view of the galactic centre in visible light is blocked by dust lying in the plane of the galaxy. An interpersonal conflict can be expressed by avoidance behaviors.a. trueb. false How do you see Christianity having changed from its origins in the 1st century Middle East? 2: What might be some of the implications of more Christians living in Africa, Asia, and Latin America than anywhere else in the world? 4.1 Define the term Perimeter 4.2 Calculate the perimeter of the pitch. You may use the formula: P=2(+b), where = length and b = breadth A binary tree is either empty (has no nodes) or has a root node and two more binary trees known as the left and right subtrees. Letting bn be the number of binary trees with nodes labelled 1, 2,..., n and B(x) = [infinity] bx" /n!, show that B(x) = 1 + x(B(x)). Conclude that bn = n!Cn. It takes Cookie Cutter Modular Homes, Incorporated, about six days to receive and deposit checks from customers. The company's management is considering a lockbox system to reduce the firm's collection times. It is expected that the lockbox system will reduce receipt and deposit times to three days total. Average daily collections are $163,000, and the required rate of return is 7 percent per year. Assume 365 days per year. a. What is the reduction in outstanding cash balances as a result of implementing the lockbox system? b. What is the daily dollar return that could be earned on these savings? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) c-1. What is the maximum monthly charge the company should pay for this lockbox system if the payment is due at the end of the month? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) c-2. What is the maximum monthly charge the company should pay for this lockbox system if the payment is due at the beginning of the month? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) a. Outstanding cash balance reduction $ 489,000 b. Daily dollar return $ 90.66 c-1. Maximum monthly charge c-2. Maximum monthly charge Write a program in c that exemplifies the Bounded Producer-Consumer problem using shared memory.