4. what is the gravitational attraction between two objects of mass 5,000,000kg (5.0 x 106 kg) at a distance of
100 meters from each other? estimate g as 6.67 * 10-11 n (m/kg)?
a. ion
b. .17 n
c. 57000 n
d. 2300 n
e. 1900 n
help asap no rocky

Answers

Answer 1

The gravitational attraction between the two objects is approximately 167.5 N, which is closest to option B. 0.17 N.

We'll use the gravitational attraction formula to find the gravitational force between two objects of mass 5,000,000 kg ([tex]5×[/tex][tex]10^{6}[/tex] kg) at a distance of 100 meters from each other, with an estimated gravitational constant (G) of [tex]6.67[/tex]×[tex]10^{-11}[/tex] N(m/kg)².

The formula is:
F = [tex]G(\frac{mM}{r^{2}})[/tex]
where F is the gravitational force, G is the gravitational constant, m₁, and m₂ are the masses of the two objects, and r is the distance between them.

F=[tex]\frac{(6.67)(10^{-11} )[(5.0)(10^{6})]^2}{(100)^2}N[/tex]


Step 1: Calculate the product of the masses:
[tex](5.0)(10^6)(5.0)(10^6) = 25(10^{12} )[/tex] kg²

Step 3: Calculate the square of the distance:
[tex]100^{2} m^{2}[/tex] = 10,000 m²

Step 4: Calculate the gravitational force:
F =  [tex]\frac{(6.67)(10^{-11} )(25.0)(10^{12})}{(10,000)} N[/tex]

Step 5: Simplify the equation:
F = [tex](6.67)(25)10^{-11 + 12 - 4} N[/tex]

Step 6: Calculate the final value:
F ≈ [tex]167.5[/tex]×[tex]10^{-3}[/tex]≈ 167.5 N

To know more about the calculation of gravitational attraction visit:

https://brainly.com/question/28009700

#SPJ11


Related Questions

Estimate the lowest possible kinetic energy of a neutron contained in a typical nucleus of radius 1. 2×10−15m. Use the radius as the uncertainty in position for the neutron. [Hint: Assume a particle can have a kinetic energy as large as its uncertainty. ]

Answers

The uncertainty principle can be used to estimate the minimum kinetic energy of a neutron in a nucleus of a certain size. The resulting minimum energy is around [tex]10^{-24}[/tex] joules.

The uncertainty principle states that the product of the uncertainty in the position and momentum of a particle must be greater than or equal to Planck's constant divided by 4π.

Therefore, using the given radius of the nucleus as the uncertainty in position, we can calculate the minimum kinetic energy of a neutron in the nucleus by assuming it has an uncertainty in momentum equal to its uncertainty in position.

Using this approach, we have:

[tex]\Delta x = 1.2 \times 10 - 15 m[/tex] (uncertainty in position)

[tex]\Delta p = \Delta mv = \Delta m(\Delta x/\Delta t) = \Delta m(2\pi \Delta f \Delta x)[/tex] (uncertainty in momentum)

where Δm is the uncertainty in mass, Δf is the frequency of the neutron, and Δt is the time interval over which the position is measured.

Assuming a typical frequency of [tex]10^{21} Hz[/tex] and a mass uncertainty of 1 atomic mass unit [tex](1.67 \times 10^{-27} kg)[/tex], we obtain a minimum kinetic energy of approximately [tex]10^{-24} \;joules[/tex].

In summary, the minimum kinetic energy of a neutron contained in a typical nucleus of radius [tex]1.2 \times 10^{-15} m[/tex] can be estimated using the uncertainty principle.

This approach involves assuming an uncertainty in momentum equal to the uncertainty in position and using typical values for the frequency and mass uncertainty of the neutron. The resulting minimum kinetic energy is on the order of [tex]10^{-24} \;joules[/tex].

To know more about kinetic energy refer here:

https://brainly.com/question/7674744#

#SPJ11

Maintenance of military defense and the national parks system that must be renewed every year falls under which type of government spending

Answers

The maintenance of military defense and the national parks system that must be renewed every year falls under the category of government current spending, also known as government consumption.

Government current spending refers to the expenses incurred by the government on the day-to-day activities of providing public goods and services, such as education, healthcare, defense, and infrastructure maintenance.

This spending is financed through taxes and other forms of revenue collected by the government.

Government current spending is different from government capital spending, which involves investment in infrastructure, such as roads, bridges, and buildings.

To know more about military defense, refer here:

https://brainly.com/question/31747991#

#SPJ11

A beam of light travels into a new denser medium causing the speed of light to change to 2. 5 x 10 8 m/s. What is the index of refraction for the new medium?

Answers

The index of refraction for the new medium is 1.2. The index of refraction is a measure of how much the speed of light is slowed down as it passes through a material.

It is defined as the ratio of the speed of light in a vacuum to the speed of light in the material. The formula for the index of refraction is:

n = c/v

where n is the index of refraction, c is the speed of light in a vacuum (approximately 3 x [tex]10^{8}[/tex] m/s), and v is the speed of light in the material.

In this case, we are told that the speed of light in the new medium is 2.5 x [tex]10^{8}[/tex] m/s. Plugging this into the formula, we get:

n = c/v

n = 3 x [tex]10^{8}[/tex] m/s / 2.5 x [tex]10^{8}[/tex] m/s

n = 1.2

Therefore, the index of refraction for the new medium is 1.2.

To know more about index of refraction, refer here:

https://brainly.com/question/23750645#

#SPJ11

At the gym, a man pulls a bar on a machine that works the muscles of the upper back. It takes him 0. 5 seconds to raise 30


kilograms of weights a vertical distance of 0. 5 meters.


Which of these exerts the same power output? (Estimate g as 10 m/s2. )



A) lifting 25 kilograms a distance of 2. 4 meters in 2. 0 seconds



B) lifting 45 kilograms a distance of 2. 4 meters in 3. 0 seconds


C) leg pressing 45 kilograms a distance of 0. 5 meters in 0. 5 seconds.


D) bench pressing 30 ligrograms a distance of 0. 5 meter in 1. 5 seconds.


Pleaseeeeeee help me

Answers

The power output of the man pulling the bar can be calculated as follows:

Power = Work / Time

The work done by the man is equal to the force he exerts multiplied by the distance he moves the weights:

Work = Force x Distance

The force he exerts is equal to the weight of the weights he is lifting:

Force = Weight x g

where g is the acceleration due to gravity, which is approximately 10 m/s^2.

Plugging in the given values, we get:

Force = 30 kg x 10 m/s^2 = 300 N

Work = Force x Distance = 300 N x 0.5 m = 150 J

Power = Work / Time = 150 J / 0.5 s = 300 W

Now we can check which of the other options exerts the same power output:

Option A:

Force = 25 kg x 10 m/s^2 = 250 N

Work = Force x Distance = 250 N x 2.4 m = 600 J

Power = Work / Time = 600 J / 2.0 s = 300 W

Option B:

Force = 45 kg x 10 m/s^2 = 450 N

Work = Force x Distance = 450 N x 2.4 m = 1080 J

Power = Work / Time = 1080 J / 3.0 s = 360 W

Option C:

Force = 45 kg x 10 m/s^2 = 450 N

Work = Force x Distance = 450 N x 0.5 m = 225 J

Power = Work / Time = 225 J / 0.5 s = 450 W

Option D:

Force = 30 kg x 10 m/s^2 = 300 N

Work = Force x Distance = 300 N x 0.5 m = 150 J

Power = Work / Time = 150 J / 1.5 s = 100 W

Therefore, options A and B exert the same power output as the man pulling the bar, while options C and D do not.

A fly accumulates 3.0 x 10-10 c of positive charge as it flies through the air. what is the
magnitude and direction of the electric field at a location 2.0 cm away from the fly?

Answers

The magnitude of the electric field at a location 2.0 cm away from the fly with 3.0 x 10^-10 C of positive charge is 5.39 x 10^(-2) N/C. The direction of the electric field is radially outward from the fly.

To find the magnitude and direction of the electric field at a location 2.0 cm away from the fly, we need to use the formula for the electric field due to a point charge:

E = k * Q / r^2

where E is the electric field, k is the electrostatic constant (8.99 x 10^9 N m^2/C^2), Q is the charge of the fly (3.0 x 10^-10 C), and r is the distance from the charge (2.0 cm or 0.02 m).

Step 1: Convert distance to meters: 2.0 cm = 0.02 m

Step 2: Plug in the values into the formula:

E = (8.99 x 10^9 N m^2/C^2) * (3.0 x 10^-10 C) / (0.02 m)^2

Step 3: Calculate the electric field magnitude:

E = 5.39 x 10^(-2) N/C

Since the fly has a positive charge, the electric field will be directed radially outward from the fly. This means that at any point 2.0 cm away from the fly, the electric field will be pointing away from the fly in a direction perpendicular to the line connecting the fly and the point.

Know more about electric field click here:

https://brainly.com/question/8971780

#SPJ11

In the arrangement of the first figure, we gradually pull the block from x = 0 to x = +3. 0 cm, where it is stationary. The second figure gives the work that our force does on the block. The scale of the figure's vertical axis is set by Ws = 1. 0 J. We then pull the block out to x = +5. 0 cm and release it from rest. How much work does the spring do on the block when the block moves from xi = +5. 0 cm to (a) x = +3. 0 cm, (b) x = -1. 0 cm, and (c) x = -5. 0 cm?

Answers

To determine the work done by the spring on the block as it moves to different positions, we need to consider the displacement of the block and the potential energy stored in the spring.

Given:

Initial position of the block, xi = +5.0 cm

Final positions: (a) x = +3.0 cm, (b) x = -1.0 cm, (c) x = -5.0 cm

We'll calculate the work done by the spring separately for each position:

(a) From x = +5.0 cm to x = +3.0 cm:

In this case, the block is moving in the positive x-direction, compressing the spring. The work done by the spring is equal to the change in potential energy stored in the spring.

The change in potential energy can be calculated using the formula:

ΔPE = (1/2)k(Δx)^2.Here, k is the spring constant and Δx is the displacement of the block.

(b) From x = +5.0 cm to x = -1.0 cm:

In this case, the block is moving in the negative x-direction, stretching the spring. The work done by the spring is again equal to the change in potential energy stored in the spring.

(c) From x = +5.0 cm to x = -5.0 cm:

In this case, the block is moving in the negative x-direction, stretching the spring further. The work done by the spring is equal to the change in potential energy stored in the spring.

Note: To calculate the values, we need the spring constant (k) and the displacement (Δx) for each case. Without specific values or additional information, it is not possible to determine the exact numerical values of the work done by the spring in each scenario.

To know more about displacement refer here

https://brainly.com/question/11934397#

#SPJ11

(b)
(iii) Explain in terms of photons what effect, if any, increasing the
intensity of this radiation would have on the number of electrons
ejected per second, and on their maximum kinetic energy.
[3]
In 1902, Einstein's equation: Exmax hf- was revolutionary because it gave
strong evidence for light behaving as particles. Explain why this theory was
controversial in 1902, but is now accepted as standard pre-university physics.
[4]

Answers

Answer:

(iii) Increasing the intensity of radiation would increase the number of photons hitting the surface per second. As a result, the number of electrons ejected per second would also increase, as the photoelectric effect is a stochastic process. However, the maximum kinetic energy of the ejected electrons would not change, as it depends solely on the frequency of the incident photons.

In terms of photons, increasing the intensity of radiation would mean an increase in the number of photons per unit area per second. This would increase the probability of a photon interacting with an electron and causing ejection.

(iv) Einstein's theory that light behaved as particles, or photons, was controversial in 1902 because it contradicted the established wave theory of light. Many physicists at the time believed that light waves were similar to sound waves, and that they propagated through a medium called the "luminiferous ether." Einstein's theory challenged this idea by suggesting that light was made up of discrete particles, or photons, with specific energies.

However, Einstein's theory was later supported by experiments such as the photoelectric effect, which demonstrated that light could indeed behave like particles. Furthermore, the theory of quantum mechanics developed in the early 20th century provided a more complete understanding of the dual nature of light, which can behave as both particles and waves. Today, the particle nature of light is widely accepted and is a standard concept in pre-university physics.

How much heat, in joules, is transferred into a system when its internal energy decreases by 125 J while it was performing 30. 5 J of work

Answers

94.5 J of heat was transferred out of the system. The first law of thermodynamics states that the change in the internal energy of a system is equal to the heat added to the system minus the work done by the system.

Mathematically, ΔU = Q - W, where ΔU is the change in internal energy, Q is the heat added to the system, and W is the work done by the system.

Given that the internal energy decreases by 125 J while performing 30.5 J of work, we can find the heat transferred into the system as follows:

ΔU = Q - W

-125 J = Q - 30.5 J

Q = -125 J + 30.5 J

Q = -94.5 J

The negative sign indicates that heat was transferred out of the system. Therefore, 94.5 J of heat was transferred out of the system.

To know more about thermodynamics , refer here:

https://brainly.com/question/1368306#

#SPJ11

If a rocket takes off from earth with a certain force what must be true about earth

Answers

If a rocket takes off from Earth with a certain force, there are several things that must be true about Earth to make this possible.

Firstly, Earth must have a gravitational field that attracts the rocket toward its center. This gravitational force pulls the rocket toward the ground, and the rocket must overcome it with a force greater than the force of gravity in order to take off.

Secondly, Earth's atmosphere must be present, as the rocket needs to push against the air molecules to create thrust and lift off the ground. Thirdly, Earth's surface must be firm enough to support the launch of the rocket, with a strong and stable launchpad to prevent any accidents.

Fourthly, Earth's rotational speed and position in its orbit around the Sun must also be taken into account, as this affects the required trajectory of the rocket for a successful launch. Overall, a combination of Earth's gravitational force, atmosphere, surface conditions, and position in its orbit all play a crucial role in enabling a rocket to take off from Earth.

To learn more about Rocket

https://brainly.com/question/15061209

#SPJ4

To cause sunburn on human skin by breaking a chemical bond within a skin cell, a photon with about
3.5 eV of energy is required. What is the required wavelength?
What is the wavelength?

Answers

The required wavelength to cause sunburn on human skin by breaking a chemical bond is 3.56 x 10⁻⁷ meters

How to calculate wavelength?

Use the equation E=hc/λ, where E is the energy of the photon, h is Planck's constant, c is the speed of light, and λ is the wavelength.

First, convert the energy of the photon to joules (J) from electron volts (eV):

3.5 eV x 1.602 x 10⁻¹⁹ J/eV = 5.61 x 10⁻¹⁹ J

Next, substitute the values into the equation:

5.61 x 10¹⁹ J = (6.626 x 10⁻³⁴ J s)(3.0 x 10⁸ m/s)/λ

Solving for λ:

λ = (6.626 x 10⁻³⁴ J s)(3.0 x 10⁸ m/s)/(5.61 x 10⁻¹⁹ J) = 3.56 x 10⁻⁷ m

Therefore, the required wavelength is approximately 3.56 x 10⁻⁷ meters (or 356 nanometers), which falls in the ultraviolet (UV) region of the electromagnetic spectrum.

Find out more on sunburn here: https://brainly.com/question/26609703

#SPJ1

A ball of mass 4 kg travelling at 10 m/s makes an elastic head-on collision with another ball of mass 1 kg which is at rest. After the collision, the speed of the lighter ball is
*
zero
less than 10 m/s
equal to 10 m/s
greater than 10 m/s .

Answers

Answer:

less than 10 m/s

Explanation:

The 1 kg ball moves after the elastic collision, so you know its speed is > 0.

Due to the law of conservation of momentum, you know the total momentum before the collision must equal the total momentum after the collision.  Some of the momentum from the 4 kg ball transfers to the 1 kg ball (which is at rest) when they collide.  The 4 kg ball slows down after the collision and the lighter ball moves after the collision, but at a speed less than 10 m/s.

two similar razor blades were placed on a wooden block and the other on an iron block. it was observed that the razor blade on the wooden block is attracted by the magnet while that on the iron block was not. explain

Answers

The  soft iron is a magnetic material hence it became an induced magnet and attracted the blade.What is a magnetic substance?The term magnetic substances is a substance that can be attracted b a magnet. Now we know that the  soft iron is amagnetic material hence it became an induced magnet and attracted the blade.Recall that a magnetic substance is a substance that can be attracted by a magnet. Wood can not be attracted by a magnet but soft iron cash attracted by a magnet hence it is a magnetic substance.This is not possible in the case of thewooden block since it is not magnetic as such the the razor blade on the wooden block was attracted to the magnet while the other on the soft iron was not.

Determine the force acting downwards on a mass of 1500 g suspended on a string. (14. 72 N)​

Answers

The Force acting downwards on the mass = 14.72N

To determine the force acting downwards on a mass of 1500 g suspended on a string, you'll need to use the formula for gravitational force: F = m * g, where F is the force, m is the mass in kilograms, and g is the acceleration due to gravity (approximately 9.81 m/s²).

First, convert the mass from grams to kilograms: 1500 g = 1.5 kg.

Next, plug the values into the formula: F = 1.5 kg * 9.81 m/s² ≈ 14.72 N.

So, the force acting downwards on the mass is approximately 14.72 N.

Visit https://brainly.com/question/30526425 to learn more about Force

#SPJ11

How old was isaac newton when in 1666 he formulated the theory of universal gravity?

Answers

Isaac Newton was born on January 4, 1643, in England. He was 23 years old when he formulated the theory of universal gravity in 1666.

This was during a period when he was isolating himself to avoid the bubonic plague outbreak that was ravaging England at that time.

While in isolation, Newton engaged in extensive scientific research and discovered the laws of motion, optics, and gravity.

His theory of universal gravitation proposed that every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

This theory revolutionized the field of physics and remains a fundamental concept in modern science.

To know more about bubonic plague, refer here:

https://brainly.com/question/23399204#

#SPJ11

Instruction: Answer all questions Time: 1. 5hrs An electron is placed in a uniform electric field with field strength of 150kvm Calculate the duration for it to travel 30mm from its stationary Position Give an explanation for your answer. ​

Answers

The duration for the electron to travel 30 mm in a uniform electric field with a field strength of 150 kV/m is approximately 6.37 x 10⁻⁸ seconds.

What is acceleration?

The rate at which velocity changes with respect to time.

To solve this problem, we can use the equation for the acceleration of an electron in an electric field:

a = F/m = qE/m

where a is the acceleration, F is the force, m is the mass of the electron, q is the charge of the electron, and E is the electric field strength.

We can rearrange this equation to solve for the time it takes for the electron to travel a certain distance:

t = √(2d/a)

where d is the distance traveled.

Plugging in the given values, we get:

a = (1.602 x 10⁻¹⁹ C)(150 x 10³ V/m)/(9.109 x 10⁻³¹ kg) = 2.62 x 10¹⁴ m/s²

d = 30 mm = 0.03 m

t = √(2 x 0.03 m / 2.62 x 10¹⁴ m/s²) = 6.37 x 10⁻⁸ s

Therefore, the duration for the electron to travel 30 mm in a uniform electric field with a field strength of 150 kV/m is approximately 6.37 x 10⁻⁸ seconds.

Explanation: The acceleration of the electron in the electric field is independent of its initial velocity. Hence, the electron will continue to accelerate at a constant rate until it reaches the end of the distance. Once it reaches the end, it will have attained a maximum velocity and will continue to move at a constant velocity if there are no other forces acting on it. Therefore, the time taken to travel the distance depends only on the acceleration and the distance traveled.

Learn more about acceleration on:

https://brainly.com/question/25876659

#SPJ4

Object A is traveling at half the speed of light colliding with object B that is stationary. How does object A experience time in comparison to object B and how does object B experience time in comparison to object A before there collision?

Answers

Object A will experience time passing slower than Object B due to its velocity, while Object B will experience time passing at its normal rate. As the objects approach each other, their perception of time will start to converge.

According to the theory of relativity, time appears to be different for two observers in relative motion. In this scenario, Object A is traveling at half the speed of light, while Object B is stationary.

From Object A's perspective, time appears to be moving slower for Object B, while for Object B, time appears to be moving at its normal rate. This is due to the time dilation effect, which is a consequence of special relativity.

As Object A approaches Object B, both objects will experience a different perception of time. Object A will perceive time to be passing more slowly, while Object B will perceive time to be passing at its normal rate. However, this difference will be negligible due to the low relative velocity of the objects.

In summary, Object A will experience time passing slower than Object B due to its velocity, while Object B will experience time passing at its normal rate. As the objects approach each other, their perception of time will start to converge.

To know more about velocity refer here:

https://brainly.com/question/19979064#

#SPJ11

Identify what is being described in each sentence ​

Answers

Conductor, solar energy, power, solid wire, nonconductor or insulator power supply unit, stranded, conductor, fuse, LED , switch, may being described in each sentence.

Material with resistance to electricity, heat and sound.Device that requires energy to operate.Energy generating object that cannot dissipate energy.Type of wire made up of a single piece of metal.Material that allows the flow of electrical current, heat and sound.Computer hardware responsible for supplying power.Conductor made up of multiple small strands.Safety device used to protect an electrical circuit from excessive current.Semiconductor that illuminates with electrical charge.Device used to interrupt and transfer electric current.

The complete question is ,

Direction: Identify what is being described in each sentence. Write your answer on a separate sheet of paper. 1. It resists electricity, heat and sound. 2. It requires a source of energy for its operation.

3. It generates energy but can't dissipate energy.

4. It is a type of wire assembled in a single piece of metal.

5. It permits electrical current, heat and sound to flow freely.

6. It is a computer hardware responsible in supplying power.

7. It is made up of multiple small strands that make-up a single conductor

8. It is a safety device used to protect an electrical circuit from cxcessive current. 9. It is a semiconductor that illuminates when an electrical charge passes through it.

10. It is a device used to break an electric current and transfer it to another conductor.​

To know more about energy

https://brainly.com/question/12635369

#SPJ4

Compare and contrast compounds and mixtures (select all that are true):


Compounds are pure substances, but mixtures are not.


When two elements bond together into a compound they have new properties.


o When two substances are mixed together in a mixture, they keep their individual properties.


Compounds are physically combined.


O Mixtures are chemically combinded.

Answers

Compounds are chemically combined pure substances with new properties, while mixtures are physically combined substances that retain their individual properties.

Compare and contrast compounds and mixtures (select all that are true):

1. Compounds are pure substances, but mixtures are not.


This statement is true. Compounds are pure substances formed by the chemical combination of two or more elements in a fixed ratio, while mixtures are combinations of two or more substances that are not chemically combined and can be physically separated.

2. When two elements bond together into a compound they have new properties.
This statement is true.

When elements chemically bond to form a compound, they create a substance with unique properties different from the individual elements.

3. When two substances are mixed together in a mixture, they keep their individual properties.

This statement is true.

In a mixture, the substances retain their individual properties because they are not chemically combined.

4. Compounds are physically combined.

This statement is false.

Compounds are chemically combined, as elements form chemical bonds to create a compound with new properties.

5. Mixtures are chemically combined.


This statement is false.

Mixtures are physically combined, as the substances in a mixture are not chemically bonded and retain their individual properties.

In summary, compounds are chemically combined pure substances with new properties, while mixtures are physically combined substances that retain their individual properties.

To know more about compounds refer here

brainly.com/question/13516179#

#SPJ11

Marshall paddled his kayak 919meters across a lake at a constant velocity. He moved that distance in 10. 0minutes. What was his velocity?

Answers

Marshall's velocity while paddling his kayak across the lake was 1.53 meters per second, which can be calculated by dividing the distance he traveled by the time it took him to cover that distance.

Marshall's velocity can be calculated using the formula:

velocity = distance/time

Where distance is 919 meters and time is 10.0 minutes, which must be converted to seconds:

time = 10.0 minutes = 600 seconds

Substituting these values, we get:

velocity = 919 meters / 600 seconds

velocity = 1.53 meters per second

Therefore, Marshall's velocity was 1.53 meters per second.

To explain this, we can say that velocity is the rate of change of displacement over time, and in this case, Marshall traveled a distance of 919 meters over a period of 10.0 minutes.

By dividing the distance by the time, we can calculate his velocity, which tells us how fast he was traveling in meters per second.

In summary, Marshall's velocity while paddling his kayak across the lake was 1.53 meters per second, which can be calculated by dividing the distance he traveled by the time it took him to cover that distance.

To know more about velocity refer here:

https://brainly.com/question/19979064#

#SPJ11

A gasoline engine takes in 1. 61 10 J of heat and delivers 3700 J of work per cycle. The heat is obtained by burning gasoline with a heat of combustion of 4. 60 10 J/g. (a) What is the thermal efficiency? (b) How much heat is discarded in each cycle? (c) What mass of fuel is burned in each cycle? (d) If the engine goes through 60. 0 cycles per second, what is its power output in kilowatts? In horsepower?

Answers

(a). The thermal efficiency is approximately 22.9%.

(b). The heat discarded in each cycle is approximately 1.6063 × [tex]10^6[/tex] J.

(c). The mass of fuel burned in each cycle is approximately 0.035 kg.

(d). The engine's power output is approximately 222 kW or 297.6 hp.

To solve this problem, let's use the following formulas and conversions:

Thermal efficiency (η) = (Useful work output / Heat input) * 100%Heat input = Heat of combustion * Mass of fuel burnedPower output (P) = Work done per cycle * Number of cycles per second1 kilowatt (kW) = 1000 watts (W)1 horsepower (hp) = 745.7 watts (W)

Given:

Heat input (Qin) = 1.61 × [tex]10^6[/tex]J

Work done per cycle (W) = 3700 J

Heat of combustion of gasoline (H) = 4.60 × [tex]10^7[/tex] J/kg

Cycles per second (f) = 60.0 cycles/s

(a) To calculate the thermal efficiency:

Thermal efficiency (η) = (Useful work output / Heat input) * 100%

η = (W / Qin) * 100%

η = (3700 J / 1.61 × 10^6 J) * 100%

η ≈ 0.229 * 100%

η ≈ 22.9%

(b) To calculate the heat discarded in each cycle:

Heat discarded = Heat input - Useful work output

Heat discarded = Qin - W

Heat discarded = 1.61 × [tex]10^6[/tex] J - 3700 J

Heat discarded ≈ 1.6063 × [tex]10^6[/tex] J

(c) To calculate the mass of fuel burned in each cycle:

Heat input = Heat of combustion * Mass of fuel burned

Mass of fuel burned = Heat input / Heat of combustion

Mass of fuel burned = 1.61 × [tex]10^6[/tex] J / 4.60 × [tex]10^7[/tex] J/kg

Mass of fuel burned ≈ 0.035 kg

(d) To calculate the power output in kilowatts and horsepower:

Power output (P) = Work done per cycle * Number of cycles per second

P = W * f

P = 3700 J * 60.0 cycles/s

P = 2.22 × [tex]10^5[/tex] J/s

Power output in kilowatts:

P(kW) = P / 1000

P(kW) ≈ 2.22 × [tex]10^5[/tex] J/s / 1000

P(kW) ≈ 222 kW

Power output in horsepower:

P(hp) = P / 745.7

P(hp) ≈ 2.22 × [tex]10^5[/tex] J/s / 745.7

P(hp) ≈ 297.6 hp

To know more about thermal efficiency refer here

https://brainly.com/question/13039990#

#SPJ11

A shell that is initially at rest explodes into two fragments, one fragment 25 times heavier than the other. If any gas from the explosion has negligible mass, then:.

Answers

The larger fragment moves at 1/25th the velocity of the smaller fragment.

By conservation of momentum, the total momentum of the system before and after the explosion must be equal. Since the shell is initially at rest, the total initial momentum is zero. After the explosion, the two fragments move in opposite directions with different velocities. Let the mass of the smaller fragment be m and the mass of the larger fragment be 25m. Then, by conservation of momentum:

0 = mv + (25m)(-v')

0 = v - 25v'

where v and v' are the velocities of the smaller and larger fragments, respectively, after the explosion. Solving for v', we get:

v' = v/25

Since the total kinetic energy of the system is also conserved, we can use the conservation of energy equation to solve for the velocities of the two fragments. Let E be the total kinetic energy of the system after the explosion. Then:

E = (1/2)mv^2 + (1/2)(25m)(v/25)^2

E = (1/2)mv^2 + (1/2)mv^2

E = mv^2

Therefore, the kinetic energy of the system after the explosion is equal to the kinetic energy of the smaller fragment before the explosion. Using this, we can solve for the velocity of the smaller fragment:

E = (1/2)mv^2

v = sqrt(2E/m)

And the velocity of the larger fragment is:

v' = v/25 = sqrt(2E/m)/25

So, the ratio of the velocities of the two fragments is:

v'/v = (sqrt(2E/m)/25) / sqrt(2E/m) = 1/25

To know more about momentum refer here

https://brainly.com/question/30487676#

#SPJ11

What is wind ? What type of energy is possessed by wind ? (b) Explain how, wind energy can be used to generate electricity. Illustrate your answer with the help of a labelled diagram. (c) State two advantages of using wind energy for generating electricity. (d) Mention two limitations of wind energy for generating electricity

Answers

a) Wind is the movement of air in the Earth's atmosphere. It occurs due to the uneven heating of the Earth's surface by the sun, resulting in the displacement of air from areas of high pressure to areas of low pressure. Wind can occur at various speeds and directions, and it plays a crucial role in weather patterns and climate.

b) Wind energy is a form of kinetic energy that is possessed by the movement of air molecules. This energy can be harnessed to generate electricity through the use of wind turbines.

The process of generating electricity from wind energy involves the following steps:

1. Wind turbines are installed in areas where there is a consistent and strong wind flow. These turbines consist of large blades that are connected to a rotor.

2. When wind flows over the blades, it causes the rotor to spin. The rotation of the rotor generates mechanical energy.

3. This mechanical energy is then converted into electrical energy through the use of a generator.

4. The electrical energy is then transmitted to a power grid, where it can be distributed to homes and businesses.

c) There are several advantages of using wind energy for generating electricity, including:

1. Renewable: Wind energy is a renewable resource, which means it is replenished naturally and can be used indefinitely without depleting natural resources.

2. Clean: Wind energy does not produce harmful pollutants or greenhouse gas emissions, making it a clean and environmentally friendly source of energy.

d) There are also limitations to using wind energy for generating electricity, including:

1. Variability: Wind energy is not a consistent source of energy, as wind speeds can vary depending on weather patterns and time of day. This can make it difficult to rely on wind energy as a sole source of electricity.

2. Land use: Wind turbines require a significant amount of land, which can be problematic in areas with limited space or where wildlife habitats may be affected.

To know more about Wind energy refer here

https://brainly.com/question/29293441#

#SPJ11

How far do you have to lift a 10kg bag of salt to do 250j of work?

Answers

You have to lift the 10kg bag of salt approximately 2.55 meters to do 250J of work.

To determine how far you have to lift a 10kg bag of salt to do 250J of work, we need to use the work-energy theorem and the formula for gravitational potential energy. The work-energy theorem states that the work done on an object is equal to the change in its potential energy. The formula for gravitational potential energy is:

PE = m * g * h

where PE is the potential energy, m is the mass (10kg), g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the height the object is lifted.

Since the work done is 250J, we can set the potential energy equal to the work done:

250J = 10kg * 9.8 m/s² * h

Now, we need to solve for h:

250J = 98 kg*m/s² * h
h = 250J / 98 kg*m/s²
h ≈ 2.55 meters

For more about work:

https://brainly.com/question/18094932

#SPJ11

Deployment Worksheet 2b - Work 1. A 1400 N force is applied parallel to a horizontal surface. It pushes an 80 kg box 2 m across the surface. What work is done

Answers

The work done in pushing the 80 kg box 2 meters across the surface with a 1400 N force applied parallel to the surface is 2800 Joules.

To find the work done, we need to consider the force applied, the displacement, and the angle between them.

In this case, the force (F) applied is 1400 N, the displacement (d) is 2 meters, and since the force is applied parallel to the horizontal surface, the angle (θ) between the force and the displacement is 0 degrees. The formula to calculate work (W) is:

W = F × d × cos(θ)

Now, let's substitute the given values:

W = 1400 N × 2 m × cos(0°)

Since cos(0°) = 1, the equation becomes:

W = 1400 N × 2 m × 1

W = 2800 J (Joules)

So, the work done in pushing the 80 kg box 2 meters across the surface with a 1400 N force applied parallel to the surface is 2800 Joules.

Learn more about work at: https://brainly.com/question/3714635

#SPJ11

Vocabulary: electron volt, frequency, photoelectric effect, photon, photon flux, voltage, wavelength, work function Prior Knowledge Questions (Do these BEFORE using the Gizmo. ) 1. Suppose you went bowling, but instead of a bowling ball you rolled a ping pong ball down the alley. What do you think would happen? 2. Suppose you rolled a lot of ping pong balls at the bowling pins. Do you think that would change the results of your experiment? Explain. Gizmo Warm-up The photoelectric effect occurs when tiny packets of light, called photons, knock electrons away from a metal surface. Only photons with enough energy are able to dislodge electrons. In the Photoelectric Effect Gizmo, check that the Wavelength is 500 nm, the Photon flux is 5 γ/ms, the Voltage is 0. 0 volts, and Potassium is selected. Click Flash the light to send photons of light (green arrows) toward a metal plate encased in a vacuum tube. 1. The blue dots on the metal plate are electrons. What happens when the photons hit the electrons? 2. What happens when the electrons reach the light bulb? _________________________________________________________________________ When electrons reach the light bulb they complete a circuit, causing the bulb to glow briefly

Answers

In this scenario, you are experimenting with the photoelectric effect, which occurs when photons (tiny packets of light) knock electrons away from a metal surface. Only photons with enough energy can dislodge electrons.

1. When the photons hit the electrons on the metal plate, if the photons have enough energy (determined by their frequency and wavelength), they can dislodge the electrons from the metal surface. This process demonstrates the photoelectric effect.

2. When the dislodged electrons reach the light bulb, they complete an electrical circuit, allowing the light bulb to glow briefly. This occurs due to the flow of electrons, which is influenced by the photon flux, electron volt, and voltage in the system.

The work function of the metal (in this case, potassium) also plays a role in the photoelectric effect, as it represents the minimum energy required to remove an electron from the metal surface.

To learn more about circuit, refer below:

https://brainly.com/question/27206933

#SPJ11

5. The planet Mars has a mass about one-tenth the mass of Earth. Even though Mars has two moons, their tidal forces have a much weaker effect on Mars than Earth's moon does on Earth. Why do you think this is ? Use the data in the tables to support your prediction

Answers

This is supported by the data in the tables, which show that the moon of Mars has a much smaller tidal force (0.2 m/s²) than the moon of Earth (2.2 m/s²).

Why is Mars unique from Earth?

The diameter of Earth is about twice that of Mars. Mars would be the size of a ping-pong ball if Earth were a baseball. While Mars has no liquid water, nearly 70% of Earth does. The surface of the Earth receives more than 100 degrees Fahrenheit of solar heating.

The difference in mass between Mars and Earth is a significant factor in the difference between the tidal forces each planet experiences. Since Mars is much less massive than Earth, it has much less gravity and therefore a weaker pull on its moons. This means that the moons of Mars are much less able to exert a tidal force on the planet. This is supported by the data in the tables, which show that the moon of Mars has a much smaller tidal force (0.2 m/s²) than the moon of Earth (2.2 m/s²).

To learn more about gravity use:

https://brainly.com/question/940770

#SPJ4

Using what you learned from this lab describe how you receive colors from the various object observed in our world. discuss how we receive colors from objects to omit light such as tvs, objects i don’t emit light such as colored paper, and how filters on our eyes work such as sunglasses. keywords: phototons, wavelength, and colors that just red, green, and blue.

Answers

Color perception is determined by wavelengths of light, red, green, and blue make colors for objects that emit light. The color we see for objects not emitting light is based on reflected light. Sunglasses and filters change perceived colors by blocking certain wavelengths of light.

Color perception is a complex phenomenon that involves the interaction between light and objects in our environment. The colors that we see are determined by the wavelengths of photons that are reflected or emitted by objects. When light hits an object, some photons are absorbed while others are reflected, and the reflected photons are what we see as color.

For objects that emit light, such as TVs and computer screens, the colors are created by combining just three primary colors: red, green, and blue. By varying the intensity of these three colors, the screen can create a wide range of hues and shades.

For objects that do not emit light, such as colored paper, the color that we see is determined by the wavelengths of light that are reflected by the object. For example, a red piece of paper appears red because it reflects red light and absorbs other wavelengths.

Filters, such as sunglasses, work by selectively blocking certain wavelengths of light. This changes the colors that we perceive, as some colors are absorbed while others are allowed through.

In summary, color perception is based on the wavelengths of photons reflected or emitted by objects. For objects that emit light, colors are created by combining red, green, and blue.

For objects that do not emit light, the color that we see is determined by the wavelengths of light that are reflected. Filters, such as sunglasses, work by selectively blocking certain wavelengths of light to change the colors that we perceive.

To know more about wavelengths refer here:

https://brainly.com/question/10600766#

#SPJ11

Jake wants to prove the theorem that says that the measure of the quadrilateral's opposite angles add to 180°

Answers

Jake wants to prove the theorem that states that the measure of the opposite angles of a quadrilateral add up to 180 degrees.

This theorem is also known as the "opposite angles theorem." To prove this, Jake could use several methods, including the use of geometric proofs, algebraic proofs, or even visual aids such as diagrams or sketches.

One way to approach the proof would be to divide the quadrilateral into two triangles and show that the sum of the angles in each triangle equals 180 degrees.

Jake could then use this information to prove that the opposite angles of the quadrilateral add up to 180 degrees as well. Another approach would be to use the properties of parallel lines and transversals to show that the opposite angles are supplementary (i.e., add up to 180 degrees).

Regardless of the method used, the opposite angles theorem is a fundamental concept in geometry that is used to solve a variety of problems involving quadrilaterals.

To learn more about geometry, refer below:

https://brainly.com/question/31408211

#SPJ11

Scenario: You place a cold metal sphere in a container of hot water.


(a) Type(s) of energy transfer:



(b) Where will each form of transfer occur?



(c) What will happen and why?



4. Scenario: You place a piece of hot rock into a metal container, and then remove all the


air from the container.


(a) Type(s) of energy transfer:



(b) Where will each form of transfer occur?



(c) What will happen and why?

Answers

In the first scenario, heat transfers from hot water to a cold metal sphere until they reach thermal equilibrium. In the second scenario, heat and radiation occur from a hot rock to a metal container with no air until they reach thermal equilibrium.

For the scenario where a cold metal sphere is placed in hot water:

(a) The type of energy transfer is heat transfer.

(b) The transfer will occur from the hot water to the cold metal sphere, resulting in a decrease in the temperature of the water and an increase in the temperature of the sphere.

(c) The heat energy from the water will flow to the sphere until the two objects reach a state of thermal equilibrium, meaning they are at the same temperature. This occurs because heat naturally flows from hotter objects to cooler ones.

For the scenario where a hot rock is placed in a metal container with all the air removed:

(a) The type of energy transfer is both heat transfer and radiation.

(b) Heat transfer will occur from the hot rock to the metal container, while radiation will occur from the rock to the surrounding environment.

(c) The hot rock will lose heat energy to the metal container until they reach thermal equilibrium. Additionally, as the rock cools, it will emit electromagnetic radiation in the form of infrared waves. Because there is no air in the container, convection, another form of heat transfer, cannot occur.

To know more about thermal equilibrium refer here:

https://brainly.com/question/14556352#

#SPJ11

Waves in a lake are 5 meters in length and pass an anchored boat 2 seconds apart. What is the speed of the waves?

Answers

The speed of the waves passing the anchored boat can be calculated using the formula Speed = Wavelength / Period. With a wavelength of 5 meters and a period of 2 seconds, the speed of the waves is 2.5 meters per second.

The speed of the waves can be determined by the formula:

Speed = Wavelength / Period

Where wavelength is the distance between two consecutive wave crests, and period is the time it takes for two consecutive wave crests to pass a fixed point (in this case, the anchored boat).

We know that the wavelength of the waves is 5 meters. We also know that the period is 2 seconds. Therefore:

Speed = 5 meters / 2 seconds = 2.5 meters/second

So the speed of the waves is 2.5 meters per second.

To learn more about wavelength

https://brainly.com/question/31143857

#SPJ4

Other Questions
Two bumper cars collide into each other and each car jolts backwards this is an example of which of newtons laws? The volume of a sphere is 14.13 cubic centimeters. What is the radius of the sphere? Use 3.14 for . In "How Archaeologists Found the Lost City of Troy," what is the author's purpose in mentioning locations, such as Ethiopia and the Nile River? Based on the text how might the surfing "purists" feel about the movement toward incorporating aerial moves into surfing competitions? Use evidence from the text to support your answer regulation is appropriate if group of answer choices market failure exists and the benefits of regulation exceed the costs. government failure exists. it improves market outcomes regardless of costs. an economic profit is being earned. A 3-inch candle burns down in 3 hours. At what rate does the candle burn, in inches per hour? The grass in the backyardof a house is a squarewith side length 10 m. Asquare patio is placed inthe centre. If the sidelength, in metres, of the patio is x, then thearea of grass remaining is given by therelation A=-x^2+100 Distribution of Christianity after the ReformationInstructionActiveIdentifying the Purpose of MissionariesQuickWhat were the purposes of the Catholic missionaries? Choose four correct answers. to spread Catholicismto train soldiers for conquestto teach European culture and valuesto convert people to Protestantismto build schools, churches, and hospitalsto create centers of education and teachingto teach native peoples how to sail for further missions The basic characteristics that differentiate living from non-living things are called Why were the Greensboro Sit-Ins so successful?They harmed local businesses' revenue.They appealed to the business owners' morality.They won the support of the President.They appealed to religious feelings. What is the central idea of Katrinas wish Can someone please help me with this? I'll mark anyone who answers for helping NO LINKS!! URGENT HELP PLEASE!!!!y = 3*2^x - 6Name the "family" and state the parent function. Five factors that may lead to youth not being innovative in organising awareness campaign that address substance abuse in community The three busiest airports in Europe are in London England ; Paris, France; and Frankfurt, Germany. The airport in London has 12.9 million more arrivals and departures than the Frankfurt airport. The Paris airport has 5.2 million more arrivals and departures than the Frankfurt airport. Write the sum of the arrivals and departures from these three cites as a simplified algebraic expression. Let x be the number of the arrivals and departures at the Frankfurt airport.(Source:Association of European Airline). In the quadratic formula, the number for a is filled in with the coefficient of x A list 7 members at the gym 10, 64, 52, 46,54,67,54. find the median You spot in workplace that appears to be spreading rapidly. What is the first step you should take?A. Find the nearest fire extinguisher and use the P. A. S. S method. B. Leave the area immediately, closing the fire door behind you. C. Attempts to fight the fire and leave all the doors open if you must leave. D. Enlist the help of as how many coworkers as possible to fight the fire What does Sebastin Yatra mean by "while embracing each other with feeling" from Dos Oruguitas? Why does the air feel "sticky" on warm summer days? What is in the air that caausses this